

Metric Engine
Reinventing Data Supply Chains for Business

Kip Twitchell is also the author of Balancing Act: A Practical
Approach to Business Event Based Insights (2011)

Metric Engine
Reinventing Data Supply Chains for Business

A Monograph

By Kip M. Twitchell

Edited by

Randall H. Ness

Published 2015

© Copyright 2012-15 Kip M. Twitchell.

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission in
writing from the author except for the use of brief quotations
in a book review or scholarly journal.

Cover art: “downpour” by Lane Twitchell, oil, enamel and
acrylic on cut melinex and polyester mesh mounted to oil and
acrylic on panel. 48" x 48". 2012 © by Lane Twitchell, 2012..
Cover design by Lane Twitchell.

A Delta Summit Imprint

Printed by CreateSpace, an Amazon Company

ISBN: 978-0-9915701-3-3

Version 1.1.20150501

First Printing 2015

An attempt at simplicity,
inspired by my children

- VI -

CONTENTS

Preface ix

Introduction

1 Quantification: The Basis of Business
Measurement

5

2 The Assembly of Data: A Manufactured
Goods Warehouse Analogy

5

The Historical Process

3 Obstructions: Impediments to Accuracy,
Completeness, Transparency, Timeliness,
Availability, and Cost-Effectiveness

11

4 Origins of Understanding: Transactions
to Balances

15

5 Clarity: Transparency, Traceability and
Repeatability

21

6 Posting and Reconciliation: The
Original Business Systems

29

7 Proliferation: Duplicative Data Supply
Chains

35

8 Time Zones and Clock Speeds: The
Periodicity of Reporting

43

CONTENTS

- VII -

An Alternative Approach

9 JIT Manufacturing: Just-In-Time
Analysis

51

10 The Metric Engine: Trusted,
Aggregated, Structured Data

55

11 Gathering Transactions: Data
Supply Chain Part 1

59

12 Low-Level Posting Data Supply
Chain Part 2

65

13 High-Level Aggregation: Data
Supply Chain Part 3

81

14 Scale: Producing the Goods 85

Conclusions

15 Data Reactive Functions: Major
Data Supply Chains

93

16 Consolidation: The Impact of Change 99

Epilogue 105

Appendix: Currency Exchange Calculations 113

Index 115

- VIII -

- IX -

PREFACE

he objective of this book is to identify and describe a
data supply chain and propose the concept of a metric engine
to dramatically empower it. The book explains the

simple functions and principles which make the data supply
chain necessary and outlines the importance of the ubiquitous
(but now almost unnoticeable) business system processes
known as posting. It then presents an alternative approach,
informed by recent developments in textual analytics, of
moving our quantitative reporting systems to metric engines,
which behave much more like a search engine. After reading
this book, if I am skillful enough in writing, the reader should
see that consolidating data supply chains results in greater
accuracy and better information, measurement, and
performance at lower cost.

A data supply chain turns data into information and
independent business events into actionable, measured
understanding. Over the last 30 years data supply chains have
proliferated, caused by the explosion of data and the need for
more efficient actions. Yet often reports from different supply
chains within the same business recommend different actions,
if they provide enough clarity for any action at all. How is this
possible given the supply chains share the vast majority of the
input business events? This book explains why.

T

REINVENTING THE DATA SUPPLY CHAIN

- X -

Data supply chain consolidation is inevitable, reversing trends
in posting process proliferation. When it happens, it may
create an entirely new industry, or at least significantly alter
existing businesses, having an impact similar to that of search
engines a generation ago. A better understanding of the simple
principles of quantifying, posting, and aggregating data can
enable consolidation. Those who invest in understanding these
principles will be able to capture significant savings by
eliminating duplicative supply chains, enabling more effective
actions, and participating in the new world.

This work summarizes, simplifies, and builds upon material
presented more exhaustively in my book, Balancing Act: A
Practical Approach to Business Event Based Insights. I’ve written this
new work for the strategist, to provide an overview of the
principles which were elaborated with detailed examples for the
practitioner in that earlier work. Paraphrasing the French
mathematician and philosopher Blaise Pascal, I made the first
book longer because I had not the time to make it shorter. Do
not be misled by the brevity of this second work. Reinventing
the data supply chain requires most of the steps in one form or
another as described in my earlier book, but all the essential
steps are included here in summary.

Although this book proposes taking the systems described in
that work farther, this is not a theoretical work. This type of
system is functioning today in many fundamental ways
described in this book at more than one organization.

That book tells the story of the contributions of many people
towards development of my understanding of this subject
through decades of practical experience. I hope that this work
makes that knowledge more approachable by focusing on the
key concepts involved.

- 1 -

Chapter 1

QUANTIFICATION

The Basis of Business Measurement

uantified metrics influence our lives every day. A very
simple example of this is when we dress differently after
checking the outside temperature. Temperature is a

quantified metric.

There was a time, not that long ago, when the concepts of
“hot” and “cold” did not equate to 110 and -20 degrees
Fahrenheit. Temperatures were born when someone divided
the responses of fluids to hot and cold into quanta—small
consistent sections—and assigned each section a number.

This development was a continuation of a general trend of
quantification that directed building efforts for significant
portion of the modern world. Such thinking led others to
realize that other things could be quantified: things then
described only by qualitative terms, such as good or bad,
effective or ineffective, responsive or unresponsive, fast or
slow.

The process of quantifying continues to the present day. New
metrics are introduced frequently: Quality of service ratings,
standardized test scores, not to mention a host of financial
measures, which are themselves quanta of various kinds. Much
of business is nothing more than measuring the value—a type
of quanta—of various behaviors, behaviors that create goods
or provide services.

Q

METRIC ENGINE

- 2 -

As we noted with temperature, measurement often changes
behavior. Measuring and reporting over time typically lead to
improvements in behavior. The expansion in what can be
measured, tracked, and therefore managed has furthered the
incredible prosperity of today. And there is no sign the trends
are about to stop.

However, our prosperity would be increasing more quickly if it
weren’t being impeded by certain obstacles. Our ability to
measure is hampered by the lack of access to “thermometers”
of various kinds. And the accuracy of some existing types of
“thermometers” could stand to be improved as well—
significant errors may lead us to be “dressed” inappropriately at
times.

The advent of computers accelerated quantification. The
computer is especially good at tracking changes in quanta and
at providing measurement at points in time. The first decades
of business computer use included precisely these types of
applications.

Computers are useful for more than just quantitative
measurement. The last two decades have seen significant
advances in qualitative computing—searching and finding words
and text, as evidenced by the ubiquitous use of search engines.
It is difficult to point to a similar type of innovation in
quantitative computing: that which deals with numbers. For our
most important financial metrics, we are using many of the
same techniques, if not systems, first automated half a century
ago.

Advances in our ability to measure, or quantitative analytics, are
now often hampered by the inappropriate organization of the
data—the quanta. Our ability to capture data continues to
improve while our ability to organize it in meaningful ways for
expanded quantitative analysis is not keeping up.

QUANTIFICATION

- 3 -

Consider the following simple and pervasive examples of well-
known metrics in business today:

Revenues: Revenue, or what a specific customer pays for
products or services, is captured by almost every business. Yet
almost no business can say how much a specific customer has
paid for their products or services over a period of time, be it
their total time as a customer, or even just last year, last month,
or last week. Most businesses lose track of the specific
customer revenue very quickly simply by not retaining the data
and thus cannot use it to measure the importance of a
customer.

Risk and Forecast: Measuring and thus understanding what a
customer has paid is not the same as predicting what they will
do tomorrow. Businesses spend a significant amount of time
trying to forecast, but wouldn’t knowing customer revenue
improve the predictions? And if we can’t keep track of that,
what other types of data that might improve our predictions do
we drop, like specifics about products or services purchased,
personal or family attributes, even information the customer
willingly shared with us? We continually struggle to predict the
future value and risk of a customer’s business and then test
how accurate our predictions were.

Profit: Revenue is one thing, but profit is quite another. One
major difference is that profit takes into account the cost of the
product or service. Costs are not typically accumulated by
customers because we don’t pay customers, we pay other
people to produce the goods or services, like employees and
vendors. Yet as in the case of customer-specific data, we often
lose visibility to these activities and inputs, and things termed
overhead. Without these measures, we are challenged to really
measure and predict costs and then profitability.

METRIC ENGINE

- 4 -

Unit Costs: The difficulty in connecting costs to customers is a
major impediment for managers of these service functions who
are actually responsible for holding costs down. There are
systems that do this today, but they do it in a very convoluted
way. They are programmed by specialists often far removed
from the real processes involved. The managers have little
input into data drivers or allocation formulas, little ability to
experiment with different types of formulas, data, and trends,
and difficulty understanding the results produced from the
existing systems. All this impedes true efficiencies in and
across many, many business functions.

The weight of the inappropriately organized data shows up in
the ever-expanding cost of producing today’s defined metrics,
let alone any additional costs for new metrics required to meet
growing demands. Only by innovating can we hope to arrest
the growing cost curve of measurement, which is well-known
to chief financial and risk officers and others in many
industries.

Understanding how data is organized today and what is
required to provide measurement at any point in time is critical
to finding a path to improve and expand quantitative
computing and the resulting benefits to society.

- 5 -

Chapter 2

THE ASSEMBLY OF DATA

A Manufactured Goods Warehouse Analogy

ata is not a naturally occurring substance like water or
rock. It is man-made from the outset. But, like
naturally occurring raw materials, data becomes

increasingly valuable as it is further refined and processed into
manufactured goods, and as it is stored in various levels of
finished forms for further assembly and use. So. let’s think
about the traditional approach to “manufacturing” data, and
storing it in “warehouses.”

We are all familiar with the creation of data; for example, we
enter our name, credit card number, and desired flights when
purchasing plane tickets. We know this data is stored
somewhere and retrieved as we check in for our flight, but how
else it is used and what other forms it may take is much less
clear to most people.

These subsequent uses of data fascinate me.

Raw materials for manufacturing are in their most granular
form and often in their most voluminous quantities, in their
initial, raw state. Crude oil, raw silicon, gypsum, iron ore, each
is a pile, with undifferentiated content and purpose before
manufacturing begins.

Our initial creation of data is like these piles. Each airline
reservation record is very similar to the one next to it. Yes,
perhaps each record differs a bit more than the particles of iron

D

METRIC ENGINE

- 6 -

ore differ in each nugget of ore, but the structure and contents
of each record are very similar.

And just like mounds of ore, there are mounds of these kinds
of records. Piles upon piles upon piles of them. Point of sale
records from retail, cell phone call records in communications,
ATM transactions in banking, and so on and so forth. All
these exist in what might be termed “operational systems,”
systems where data is originally created. These systems contain
the web pages and supporting databases we use to purchase the
ticket and check-in for the flight.

Once produced, these piles of original, very specific, granular
data can then begin their journeys toward reports of various
kinds, representing manufactured end products in a retail store,
if you will.

Portions of these piles of original data are shipped to one or
more assembly lines, beginning initially with a subassembly
rather than going directly to a final product.

These subassembly units are held in warehouses until additional
manufacturing lines are ready to receive them. In the data
world, these warehouses hold specific types of data. These
warehouses are analytical systems, data repositories, data
warehouse, or even simply reporting systems. The data they
contain have yet to be manipulated in some further way for
final presentation in reports of various sizes and shapes.

Our analogy isn’t perfect. A particle of gypsum can only exist
in one place at one time. But data doesn’t have this constraint;
copies of data are quite possible and in fact, we make them all
the time.

These copies of data are not complete copies. For example, as
the ticket data is run through the subassembly line, the credit
card number may not be copied. This sensitive data is isolated

THE ASSEMBLY OF DATA

- 7 -

and highly controlled. The potential impact to an organization
for not doing so is significant. Some data is changed into other
values, a translation from one computer “language” or
encoding to another. For example, you might have entered
“adult” when purchasing the ticket, but the copy might depict
that as a “1” (and “2” for a child). The changed data most
often is the same in substance to the original, but somewhat
different in form, perhaps more refined, similar to the
differences between crude oil and gasoline.

For the most part, the data becomes much less specific as it
moves through manufacturing; for example, it may become less
tied to a specific customer or event. Amounts are accumulated
with other customer amounts. Typically, data and raw
materials flow only in one direction. Even with recycling,
materials are rarely turned back into the original form: the tree,
the rock, the crude oil. The report manufacturing process also
transforms and destroys the original materials. With data, once
accumulated, an amount can’t typically be “unaccumulated.” If
two numbers are added together on the assembly line and only
the result is recorded or remembered, we can’t be sure what the
individual original inputs were.

The space in the quarries and mining sites is precious; space
must be made for new materials being produced daily. The
constant movement of raw materials is like deletion or loss of
the original values in the operational systems. For example, a
record of purchasing a ticket might be kept for a year, a record
of checking in for the flight might only be kept a few weeks,
and the record of the actual click of an on-line ad only for a day
or less. Because the value of the data declines with age, the
loss of original data occurs all along the manufacturing chain, in
the subassembly process, the warehouses, all the way up to the

METRIC ENGINE

- 8 -

retail stores. But the greatest reduction is from the original raw
material piles.*

Rather than simply being deleted, a large amount of data is
archived, which is a little bit like being turned into rock. Once
the detailed data is archived, it could still be turned back into
something more usable, but that would require much time and
energy. Searching through archived data for the details requires
pick and shovel-like tools.

The piece of the flight purchase data with the greatest impact,
which is copied the most and travels the farthest and lasts the
longest, is the amount paid for the ticket. The ripple effect of
this amount, accumulated with the amounts other customers
have paid, is very far-reaching. It ripples through and affects
the earnings of the company per day, week, month, quarter and
year; the revenue for the specific flight that day, month, and
other periods; the total amount due from the credit card
company, cash on hand, and other metrics.

This accumulation, transformation and mixing typically
happens in the repositories—the sub-assembly lines and
perhaps main assemble. The data is mixed in predictable
patterns defined by the systems. The summarized fare paid by
all the customers for a flight will end up next to the total cost
of the flight, including fuel, personnel, and a portion of the
aircraft costs. These two numbers will beg the question: did
the company make money on that flight or not? Answering this
question will cause another piece of data to be generated, and
this will then likely be stored with the others in the warehouse,

* Data is different than raw materials, in that we can make copies of data
rather than use up raw materials; but, if we then delete the original granular
data after aggregating for a desired report the effect is the same.

THE ASSEMBLY OF DATA

- 9 -

not in the raw material piles. This value is not created in detail
for each customer—only in aggregate for the entire flight.

This mixing in manufacturing might be thought of as creating
new data, but for the most part, very few new things are
entered in screens and stored directly in the warehouse; most
inputs come from the piles, then through the subassemblies,
and are stored in the warehouses.

These accumulated values are shipped to the final
manufacturing assembly line, pulled there by someone looking
for information of some kind. The data also becomes more
and more specific to a single question, smaller in scope, less
voluminous in quantity, and more narrowly defined, most often
summarized as it approaches the store.

If you will, the data is ultimately carried from the store in a bag
by hand—the hand of course, of someone needing some
knowledge, looking perhaps for the profitability of a specific
flight, an answer provided by precious pieces of data.

Raw Materials
(Operational

Systems)

Sub
Assembly
(Extract

Transform
& Load)

Warehouses
(Repositories)

Final
Assembly

&
Warehouse
(Reports)

Store
(Query)

Figure 1 – The Data Warehouse Analogy

METRIC ENGINE

- 10 -

- 11 -

Chapter 3

OBSTRUCTIONS

Impediments to Accuracy, Completeness,
Transparency, Timeliness, Availability, and Cost-
Effectiveness

his description of how data flows is perhaps very
familiar to those who work in this space; and although it
brings improvements over cottage manufacturing

processes before it, its limitations are quite evident.. There are
some significant obstacles in our data flows. There is a nagging
feeling that the answers we receive from the data aren’t always
accurate, if we are given the answer at all.

Many of the recent spectacular failures in business have been
abetted by suspect data or misinterpretation of data. There is a
sense that we should be able to avoid future economic
problems because of all the data available.

Why can’t we? One reason is a lack of accuracy; as copies of
the data are created and move through the system, they often
diverge, and often in significant ways. Thus, the answer
provided in one report may be different to that provided in
another. Which is right? It can be very difficult to determine.

A quality related to accuracy is completeness. That which is
recorded may be accurate, but missing or incomplete data can
be just as misleading as inaccurate data. And data might be
missing because it was not captured, or it was lost in the flow
from record to report.

T

METRIC ENGINE

- 12 -

A quality related to completeness is transparency, the ability to
understand why an answer is so. When we don’t understand
the causes of problems, we focus our actions on the wrong
drivers. This is because as data flows from raw material to the
store, it becomes less connected to the customer or event; it is
difficult to put them back together again. We understand the
results in summary, like the profitability of the flight; we know
how things stand, but not why because we lack the ability to
“drill down” from the summary to the details. Which specific
customer tickets were not profitable?

Another problem is a lack of timeliness. Just as it can take a
long time for raw materials to be turned into manufactured
goods, it can take a long time for data to move from the
operational systems to the specific report or time period in
some cases.

It can also be very difficult to find the answer to a question in
the store. The answers simply are not available, because the
data has not yet been converted into accessible, meaningful
information.

Lastly, another problem with the entire system is high costs,
those even beyond the opportunity costs mentioned above and
those resulting from poor choices made due to unavailable,
inaccurate, late, or misunderstood data. There are direct costs
that are significant and growing.

When computers were invented, the amount of data they
contained would have fit in a wheelbarrow, if not simply a
bucket, and the percentage of total costs commensurate. Now
data is a veritable mountain, and, despite continued advances in
technology, the of associated cost trend lines are clearly rising
faster than technology can reduce them. The costs of the
computers, storage, staff, procedures, and processes are large

OBSTRUCTIONS

- 13 -

enough; every time we make a copy of the data, we increase the
costs.

Our needs for achieving increased accuracy, completeness,
transparency, timeliness, and availability in more cost-effective
ways will continue to drive changes in how data is stored and
used. To understand these obstacles better, and how these
changes are likely to evolve, we need to be more specific about
how data is organized and copied.

METRIC ENGINE

- 14 -

- 15 -

Chapter 4

ORIGINS OF UNDERSTANDING

Transactions to Balances

eporting is a process of gaining understanding:
understanding how things are, why they are that way,
what has happened or what might happen next, and

how they might change. Reporting in business systems
typically is not a narrative, like a newspaper article or this book.
Rather, most often, it is a table—a spreadsheet— wherein we
quantify things, with either counts or accumulated monetary
amounts.

We learn how to quantify as children first by classifying, making
different kinds of piles. We sort objects into piles by shape
(round, long, or flat), size (large, medium, or small), and color
(red, yellow, or blue). Objects that are flat, large, and red are
placed in one pile, and objects that are yellow, medium-sized,
and round in another.

True quantification comes next. The simplest report or table
would show a count of the objects in each pile. The counts are
simple metrics. A more advanced table would show the
accumulated weight of all the objects in a pile. There might be
some reports of counts and weights, but in business reporting,
our reporting begins with and more frequently focuses on the
value of the assets rather than the other potential characteristics.

R

METRIC ENGINE

- 16 -

ASSET TYPE SUBTOTAL TOTAL
Cash:

 Checking 238.95

 Savings 756.23 995.18

Investments:

 Stocks 6,239.98

 Bonds 2,596.21 8,836.19

Retirement:

 Pension 98,200.00

 401(K) 137,396.00 235,596.00

Cars

 Honda 8,456.04

 Ford 13,496.00 21,952.04

Home 220,456.21

Total Assets 487,835.62

Table 1 – Example Table of Balances

The summarized values in many business reporting tables—
Total Assets and asset by type—are balances. They state how
things stand right now, today, or for the period for which the
balances were created. There may be many individual assets—
many details behind these numbers—but the balances convey a
great deal of meaning and information very simply and very
concisely.

A balance of some kind typically conveys meaning very
effectively. For this reason, the repository warehouses, final
assembly lines, and stores of data contain many balances.

ORIGINS OF UNDERSTANDING

- 17 -

Table 2 – Example Table of Transactions

We might think of the individual items in each pile as
transactions. Transactions have limited usefulness by
themselves, unless we want to know something specific (for
example, the date we bought an asset). Balances are generally
more useful, but transactions have greater completeness in
representing what happened. Balances, by definition, sum-
marize out details. Understanding begins with balances, and yet
transactions are the “stuff” at the bottom of all balances.

As an example, suppose the cash balances in Table 1 were
made from the transactions shown in Table 2. The first four
transactions accumulate to the Checking Account ending
balance of 238.95. Note that even here we have not shown all
the transactions since the account was opened, instead using a
“Beginning Balance” transaction to summarize transactions for
prior days, months, years, or decades.

Our balances in Table 1 contain only two attributes, Asset Class
and Asset Subclass, and an accumulated Amount. But our
transactions in Table 2 contain two more columns, Date and
Transaction Type. These two attributes are not available for

DATE TRAN
TYPE

ASSET
CLASS

ASSET
SUBCLASS

AMOUNT

Jan 1 Beg. Bal. Cash Checking 200.00

Jan 5 Deposit Cash Checking 43.21

Jan 23 Check Cash Checking (4.26)

Jan 28 Transfer Cash Checking (100.00)

Jan 1 Beg. Bal. Cash Savings 656.23

Jan 28 Transfer Cash Savings 100.00

METRIC ENGINE

- 18 -

reporting from our balances: they are characteristics we chose
to ignore when making our piles. We would have to make
other balances if we need to report on these attributes. Thus,
because they hold additional attributes, transactions are more
flexible for making reports, but they typically have to be made
into balances before being really useful because most reporting
starts with how things stand now—a balance—not how things
changed—a transaction.

Is it possible to make a balance without accumulating
transactions? Perhaps so. For example, you might inquire of
an ATM machine what your account balance is without
accumulating all the historical transactions, but this would be
simply relying upon the bank’s balance keeping. You could
derive an inventory balance by counting a warehouse’s
inventory without regard to the receipts and shipments, but one
might argue that the act of inventorying each item is a type of
transaction and that the total amount on hand is a balance. *

Certainly we do not count the grains of wheat in a silo or the
molecules in an oil tank. Imprecision in our measurements of
transactions necessitates truing up totals at times. Yet even
when truing up, we typically record the difference between
what is on hand and our inventory record as a transaction
called a loss or a gain. And without adding and subtracting
transactions from balances between inventory counts, we
would have no sense of where we stand. Balances are
accumulations of individual items or transactions.

* Note that in some cases we use the term balance, as in a financial position,
and we think we are referring to a transaction, but that’s because the pile
only contains one thing. The “balance owed” might be the same as a single,
original transaction, because no incremental payment transaction was ever
made.

ORIGINS OF UNDERSTANDING

- 19 -

ASSET TYPE MONTH 1 MONTH 2

Cash: 995.18 723.48

Investments: 8,836.19 9,258.21

Retirement: 235,596.00 236,578.21

Cars 21,952.04 21,871.21

Home 220,456.21 220,456.21

Total Assets 487,835.62 488,887.32

Table 3 – Example of Balances by Month

Balances also represent copies of transaction data. As such
they can contribute to the problems of accuracy, transparency,
completeness, and so on. Let’s examine how.

Suppose someone asks how assets changed over time. This
requires us to make different piles of assets by type by time like
that shown in Table 3. We list the type of assets and then a
column for month 1 amounts and another for month 2
amounts, each column effectively being a different pile: One
pile for how things were a month ago and another pile for how
things are today. Yet we know that there really aren’t multiple
physical things in these “piles”; the house in pile 1 is probably
the same house in pile 2. Yet we have made two copies of the
transaction data.

This isn’t a problem as long as everything is recorded properly
and added correctly and never changes. But suppose we find
that the listed value of the house was wrong—the data on the
house transaction was incorrect. Of course, we can change the
transaction. However, changing the transaction does not
automatically change the balances that summarized this

METRIC ENGINE

- 20 -

transaction. These copies of data are independent from the
transaction.*

Correction isn’t the only reason things change. At times, how
we would record a transaction today is different from how we
recorded it yesterday; we refine our meaning of the transaction
or its value may simply change. For example, the home
appraisal might now be higher. Yet again, these changes to a
transaction or the creation of a new transaction do not change
the corresponding balances.

A change to the home value affects at least six balances in our
example tables, two on Table 1 and four on Table 3. All of
these balances are floating around the organization,
independent of the transaction, and all with the wrong value.

This impact to accuracy is real, and pervasive. Our ability—
and need—to make copies of data in the form of balances to
convey meaning is important. Yet we must find ways of
making copies more accurate, making fewer of them, or
perhaps linking them to transactions more closely by making
temporary versions when needed.

* When (1) transactions and balances are stored in the same spreadsheet, (2)
the formulas correctly associate transactions with balances, and (3) the
spreadsheet is configured to automatically calculate after changes are made,
the related balances can be updated “automatically.” As well see, storing all
data in one location, correctly specifying all these relationships, and applying
the compute capacity to do that for larger amounts of data is impossible.

- 21 -

Chapter 5

CLARITY

Transparency, Traceability and Repeatability

alances convey great meaning quickly about how things
are, but they explain less clearly about why things are
that way. We use transactions to create balances, yet the

relationship is not just one way, from transactions to balances.
Transactions (or more-detailed balances) often help explain a
balance as we drill down from the balance to its constituent
transactions.

In other words, transactions provide transparency.

Think of a bank account statement. The first number examined
is the month-end balance. This balance quickly gives an
overview of the status of things; whether the balance is small or
large, we know where we stand.

Assume we did not use the account during the month. We
would then expect little or no change in the balance. If the
statement shows the same ending balance as the prior month,
we need no detail; we already understand the balance.

If the balance changed unexpectedly, though, the only clue or
cure—the only way to understand what happened—is to see
more detail.

It may not require examining individual transactions initially.
The statement might present summaries of total deposits and
total withdrawals. These more-detailed balances may provide a
clue to the problem and where to continue the investigation.

B

METRIC ENGINE

- 22 -

For example, if the summary of deposits is zero, we may
immediately realize that our last deposit was just after the
statement cutoff date and understand the reason for the
unexpected ending balance.

If these more-detailed balances are not adequate, we may
ultimately need the detailed transactions. We may need to find
one significant transaction causing the balance to be very
different than expected. It may be just one fraudulent,
unrecorded, or forgotten transaction. Table 4 presents another
example.

These needs extend from transparency to traceability and
repeatability. Transactions prove that the balances are correct
and that there have been no errors in addition or
categorization. Traceability (the principle that all transactions
that should be included have been and no others have been)
and repeatability (accuracy in the aggregation mathematics) are
required less frequently than transparency, but are perhaps
more fundamental. They are related to the principles that we
record things only once, that we designate systems of record
for everything, and that we add correctly. Transparency is
meaningless without confidence that the balance is
fundamentally correct.

The process of tracing from balances to transactions is not neat
and orderly in most large business systems. For example, some
widely used balances summarize tremendous amounts of detail,
like the net income for a multinational corporation. It
summarizes all the income and expense transactions of the
organization for an entire year. Drilling down from a single
balance to a million or a billion detailed transactions actually
provides no increased transparency; too many details do not
enhance understanding.

CLARITY

- 23 -

Stocks Beginning of
Month

Net
Change

End of
Month

Balances: $6239.98 $422.02 $6,662.00

Top of Statement: Balance Overview

Share Purchases $4,251.07
Dividends $193.44

Shares Sold -$3897.69

Management Fees -$124.80

Net Change: $422.02

Case 1 Transaction Detail Report Section

Share Purchases $4,251.07

Dividends $193.44

Shares Sold -$124.80

Management Fees -$3897.69

Net Change $422.02

Case 2 Transaction Detail Report Section

Suppose our statement contained the balances at
the top of this report. If we remember we sold
nearly $4,000 in shares, we may not need the case 1
transaction detail. If we did not sell shares, then
the case 2 detail will be very important to
understanding the ending balance.

Table 4 –Transparency Example

METRIC ENGINE

- 24 -

It is impractical to carry all the details with every balance. It
would require making many copies of all the transactions
because many balances summarize the same transactions. If we
attempt to never store a balance but instead create it from the
transactions when needed, we would consume huge amounts of
compute capacity recreating balances each time they are
needed.

We also can’t simply infer what the details were for any balance.
If we add two numbers together and store only the balance of
100, we can't guess which of the infinite possible combinations
might have resulted in that value. Were the transaction
amounts 23 and 77, or something else?

Is it not possible to maintain a link from the balance to the
transactions? In some cases it is, if the balance involves limited
sets of detail. Yet storing a link with the balance is often no
different and just as voluminous as storing the details like 23
and 77, each requiring a unique key.

If we attempt to keep these links consistent and always accurate
for all perspectives then given our current compute capacity,
we would end up destroying the flexibility needed in the
manufacturing line, transforming the entire environment into
something like rock.

This point is worth emphasizing: Balances are used to manage
compute capacity constraints, by not requiring recreation from
transactions each time a balance is needed.

Through all our attempts to solve these problems, we are left
needing ways of improving accuracy and transparency and yet
live with the many capacity constraints of our systems today.
This little dance of transaction to balances and back goes on
over and over and over again in our quest to find meaning in
the data.

CLARITY

- 25 -

IN SUMMARY

- 26 -

In summary then, Transactions and Balances have the
following characteristics:

TRANSACTIONS BALANCES

Original records of
business events*

Typically summaries of
business events

Of limited usefulness for
reporting by themselves,
but very flexible for
making reports, because:

 Discrete events in time

 All attributes are
available

 All combinations are
possible

 All calculations are
possible

The starting point for
almost all reports, but
limited for other uses
because they are:

 As of a point in time

 For a selected set of
attributes

 Answering a specific
question

 Typically simple
aggregations

Balances have the following negative aspects:

 They duplicate the information stored on transactions
(the real book of record)

 They are less flexible in reporting than transactions

 They require reconciliation to ensure confidence that
they are correct

 If reconciled and in error, they require adjustment or
the actions taken by the business could be wrong

* The world of Business Events is larger than the world of Transactions. A
business event is anything the business wants to plan, execute, control, or
evaluate—with financial impact or not—which may or may not be
automated today as a transaction.

CLARITY

- 27 -

Balances are required because:

 They are the first step in reporting

 They show the status as of the current time, and

 They optimize resources needed to show that status
going forward

Then the question becomes:

 Which balances to create and maintain

 When to create and maintain them

 How to create and maintain them

This ultimately becomes a question of optimizing computing
resources.

METRIC ENGINE

- 28 -

- 29 -

Chapter 6

POSTING AND

RECONCILIATION

The Original Business Systems

his relationship of balances and transactions was first
documented by Luca Pacioli in the year 1494. After a
few hundred years of performing the process manually,

we applied computers to it in the same way we did it by hand.

This process is part of tens of thousands of computer
applications, but is almost never talked about or considered
directly. We might call it summarization or aggregation, but
more appropriately, it is called posting.* Posting processes create
balances, capturing the impacts of transactions over time.

First, we define what balances to make consistently, effectively
selecting which characteristics or attributes of the transactions
to track, like deciding which piles of things we should keep.

Then on a periodic basis (typically at the close of each business
day), any new transactions since the last refresh of the balances
are added or sent to the applicable balance. In other words, the
program updates my account balance to reflect all my deposits

* This accounting sense of the word “to transfer or carry from a book of
original entry to a ledger” may be related to the “publishing, announcing, or
advertising,” sense in that once the transactions are posted, the balance
“announces” the current position. (Definitions from Merriam-Webster’s
11th Collegiate Dictionary)

T

METRIC ENGINE

- 30 -

and withdrawal transactions during the day. This is called
"posting" the transactions to the corresponding balances in the
“master file.”* Table 5 shows an example.

Why do we do this? The simple answer is that it optimizes
computing resources. Rather than using a posting process,
each day we could produce all the balances needed for
reporting for any time period using all the accumulated
transactions from history. Doing so would minimize the need
for reconciliation, because any new transactions—like any
corrections or adjustments—would be included in the balances
produced.

The problem with doing this is that the number of transactions
required to produce balances over time continues to grow. A
20-year checking account requires 20 years of transactions to
create today’s balance. The compute capacity needed, whether

* Often this process can include creating a new copy of the balance file, the
container for all the related balances, serving as a backup of yesterday’s
balances.

Last Night’s Checking Acct. Balance 439.98

Today’s Transactions:

 Gas purchased -13.28

 Birthday toy purchased -7.21

 Salary deposit 750.00

 Electric bill paid -327.38

Total movement in balance 402.13

This Evening’s Checking Acct. Balance 842.11

Table 5 – Example Posting Process

POSTING AND RECONCILIATION

- 31 -

human brains 500 years ago or computers today, grows with
each passing day.

If compute capacity continues to grow faster than transaction
volumes, at some point perhaps creating balances may not be
necessary.

Until then, though, using a posting process means that the
prior balances and the incremental transactions from the last
update create the new balances. The data volumes grow very
little with time, thus compute capacity is stable. However, the
downside of this approach is that any error in a balance for a

Graph 1 - Minimized Reconciliation

If transactions are used to produce every balance needed
at report time, then the number of balances remain
relatively constant—only those needed each day are
created. However, the number of transactions required
to make those balances increases over time because some
balances require the inclusion of prior day transactions.

1 2 3 4 5 6
Days

Balances Transactions

METRIC ENGINE

- 32 -

particular time will not automatically be corrected. And
because the transactions are the real record of business events,
the balances must be tested against them to be sure they remain
accurate. Thus instead of the transaction volumes growing to
produce balances, the balances requiring reconciliation would
continue to grow.*

Because compute capacity historically was very expensive, we
started using posting processes to produce balances and lived

* The number of balances may grow at a slower rate than transactions,
depending on the new types of analysis we desire which often require new
balances.

Graph 2 – Minimized Computing

Alternatively, if yesterday’s balances are simply updated
with today’s transactions, the number of transactions
each day remains relatively stable. However, the number
of balances produced grows over time for historically
comparative reports, and these balances must be
reconciled to ensure accuracy.

New Balances Accum. Balances

Transactions

POSTING AND RECONCILIATION

- 33 -

with the inaccuracies that typically creep into the system. As
compute cost have decreased, we have likely never considered
an alternative approach.

This little posting process is ubiquitous. Inventory systems
maintain inventory balances, updated as items are sold or
materials are purchased or used. Payroll master files are
updated as hours worked are recorded and payroll checks are
created. These posting processes are examples of operational
systems, the raw material mining processes for data. Even within
the operational systems, we eliminate detailed transactions as
quickly as possible to get to balances.

The chain of posting processes continues after the original
operational systems. In some cases, the input “transactions” to
subsequent posting processes are not business or operational
events at all, like a deposit or withdrawal, but rather
summarized transactions or even low-level balances from other
operational systems.

The financial systems often receive these summarized inputs,
representing the changes in balances from operational systems.
An example would be a single “transaction” aggregating all the
inventory changes for the day rather than one for each
individual part or a total of all payroll payments made rather
than one for each check written.

In large organizations, the layers of posting processes between
some originating transactions and reporting balances may be
half a dozen levels deep. By then, the transaction details are
very far removed from the balances, with corresponding
problems in accuracy and transparency.

Another problem shows up when we need to create balances to
answer new questions. A posted balance—sometimes called a
bucket, much like the child’s pile—must be determined in

METRIC ENGINE

- 34 -

advance. New balances cannot be easily created from scratch;
the piles, like those for size and shape, are predetermined.

Suppose we didn’t care about the object color when we made
the piles. Yet now we ask about how many yellow items we
have, and there is no pile containing just yellow things. The
question requires inspecting each item. And since the
transactions may be long gone, having been posted into the
existing balance files and then archived, we have no way of
getting the answer.

Could we create a balance file containing all the attributes of
the transactions, every shape, color, and size? Technically yes,
but practically it results in no summarization; it’s as if we’re
keeping the transactions in the balance file. This is because a
customer’s deposit on a particular day at a particular time at a
specific branch to a particular account would be summarized
only with another transaction the same customer made at the
same time on the same date at the same place. How many
times would that happen! We would have (almost) as many
balances as we have transactions.

Availability of the data to answer our questions is dependent
upon someone having predicted our need for the answer and
making a posting process to update a balance containing it.
And since the types of questions we want to ask (thus changing
the balances we need) are much more dynamic than the
changes in the types of business events of organizations (which
are recorded as transactions), we often ask questions which the
balances don't support.

- 35 -

Chapter 7

PROLIFERATION

Duplicative Data Supply Chains

he ubiquity of posting processes in business may be
driven in part by its antiquity. One can make a good
case that the posting process was the first business

application architecture, beginning with manual ledgers, then
with punched cards as the transaction inputs, then with on-line
entry screens.

The commonness is also due to their ease of implementation; it
is not difficult to assemble a new team to create a new master
file and posting process when a new type of analysis is needed.

The proliferation of these processes has been driven by the
proliferation of attributes for which we want to report balances.
Five hundred years ago, or even one hundred years ago, the
financial system was the only set of balances maintained. Even
banks and insurance companies use financial system-like
processes to maintain balances. And because there were so few
balances, reconciliation was not a major problem.

Yet consider our little personal balance sheet from Chapter 4.
In that example, our transactions had four attributes in addition
to the amount: Date, Transaction Type, Asset Class, and Asset
Subclass. Those sample transactions created fourteen different
balances if we include the subtotal. If all balances associated
with every possible combination of attributes are of interest,
then the number of possible balances would be the product of
the number of values in each attribute.

T

METRIC ENGINE

- 36 -

Table 6 – Counts of Attributes

Therefore, if the values in the last row of Table 6 show the
number of values in each column, then the number of balances
will be over 7,200 balances. There would need to be only about
600 transactions for these required unique combinations of
attribute counts.*

This explosion of potential balances has given rise to thousands
of posting processes in organizations. We are effectively
attempting to create a balance (master) file for each attribute,
like shape, color, and size, and each combination of attributes,
like shape/color, shape/size, color/size, and shape/color/size.
The same transactions are fed to multiple posting processes. In

* In our example, if Asset Class and Asset Subclass are truly a hierarchy,
then not all permutations of balances may make sense.

DATE TRAN
TYPE

ASSET
CLASS

ASSET
SUBCLASS

Jan 1 Beg. Bal. Cash Checking

Jan 5 Deposit Cash Checking

Jan 23 Check Cash Checking

Jan 28 Transfer Cash Checking

Jan 1 Beg. Bal. Cash Savings

Jan 28 Transfer Cash Savings

Jan 3 Purchase Invest. Stocks

… … … …

Total count of values for each attribute

20 9 5 8

PROLIFERATION

- 37 -

other words, an object’s color could update the color master
file, then its size update the size master, then the shape update
the shape master, a “transaction” being passed to three or more
posting processes, each making copies of the transactions data.

We have stacked new posting processes on top of old ones,
each taking in reduced volumes summarized by lower-level
processes yet combining outputs from similar lower level
systems and each providing a limited set of analytical results or
reports. This has accommodated the growth in data volumes,
analytics, and organizations, yet at the expense of more copies
of data, greater need for synchronization, and less flexibility in
the entire ecosystem.

At the bottom of the stack of processes, we might have 1,000
operational systems in large organizations. The outputs or
transactions then feed perhaps 300 higher-level posting
processes, like finance or risk, creating additional outputs.
These 300 systems then feed 150 more analytical posting
processes, like data warehouses and reporting applications.
And so on up the posting process hierarchy we go, often losing
detail all along the way.

The feeds from the operational systems typically flow to more
than one higher-level posting processes, either in detail or in
summary; the 1,000 systems have more than one “boss.” For
example, the finance system called the general ledger or GL
accumulates all of the financial transactions from all of the
originating source data systems. This is because it produces the
financial statements for the organization, which require all
financial transactions.

The general ledger isn’t the only finance system gathering all
the data from the source data systems. Quite often, the
management accounting system does as well in some measure.
In some highly regulated industries like financial services, the

METRIC ENGINE

- 38 -

regulatory or statutory systems also collect data from the source
data systems; these regulatory or statutory systems may also be
owned by the finance department, but in a separate team from
the general ledger system. More recently, risk systems have
arisen, managed by a closely associated team. Then we have
the customer analytic processes with their own growing
appetite for all the source data, as well as related marketing
systems. Operations also gets into the act, wanting to analyze
cross-system implications. And on and on it goes.

Each separate reporting stream from source data systems to
reports is a data supply chain.

Each is has sub-assembly lines with warehouses, leading to
major manufacturing lines, holding duplicative data with
numerous dependent analytical stores.

Each of these data supply chains requires nurturing and care
and feeding and tending. They are fixed structures because the
balances require consistent feeding to remain accurate. They
become siloed, often diverging from the data contained in
another flow. They are costly and inflexible.

Yet remember, the reason posting processes are used is to
reduce the compute requirements of producing balances at a
specific point in time. Different posting programs are required
because the results need to be stored in different formats
depending on the combination of attributes. In the case of our
little sample table above, for example, the 7,200 balances would
be in at most 10 different formats. Some of the balances would
be simply the total balance of the transactions for a particular
date, transaction type, or other attribute. Thus, they would
have only one attribute. Others would be combinations of two
attributes, others three, and others all four. The formula for
calculating the possible structures is n(n+1)/2, with four
attributes requiring 10 different layouts. In a modern company,

PROLIFERATION

- 39 -

there are hundreds of attributes, many with hundreds of
possible values.

Pascal once wrote something like, “If I had more time I would
have written you a shorter letter.” This same sentiment is true
when writing programs. Writing efficient programs takes a lot
of time. And having created so many, over so many years, for
so many different balances of different types means they are
likely not tremendously efficient. Thus, the number of
programs created undermines our use of posting programs to
save compute capacity.

And that’s not the only thing that has been undermined. More
importantly, having so many of them undermines the credibility
of the reports they provide. People know certain numbers on
two different reports should be the same, even though they are
produced by two different data supply chains. Yet often these
numbers are different for very simple reasons.

For example, imagine you are reviewing a report that shows the
total sales for a customer, and, by drilling down (that is, finding
the detailed transactions which make up a balance) you see the
sales for that customer for each product purchased. A number
for a specific product here should be the same as that found in
a report that is sorted and summarized first by product and
then by customer. Quite often, these two numbers are not the
same because of differences in the separate posting processes.
This fact undermines the credibility of both reports and the
processes that created them. Table 7 on the next page shows
this example.

A basic cause of the differences may be that the posting
processes do not post every transaction. The balances to be
produced by one posting engine may be more narrowly
defined, and thus only subsets of transactions are actually

METRIC ENGINE

- 40 -

included in that summary. This selection logic is hidden from
subsequent uses of the posted balance.

We can see the results of the transactions that were posted to
the balance file, but not the ones that were not posted. Only by
comparing to another complete balance file can we detect
missing transactions. This incompleteness is one simple cause
of discrepancies between different supply chains.

This comparison is a reconciliation process, and we need more
of these with the multiplication of duplicative data supply
chains.

Reconciliation is easier if both systems speak the same
“language” making the comparison simpler. However, the
different data supply chains often use different “languages” and
code sets as we aggregate from one geography or business unit
to another. Imagine what is lost in translation.

What is the cost of this proliferation? It’s hard to say in total,
but the numbers are likely substantial. Consider how we
overcome the need for transparency with just our existing
processes, by manually running the computer backwards:

Someone guesses at the transactions from the source data
system for some balance and then dumps this to a spreadsheet.
They then make subtotals of various rows and try to recreate
the balance. Having finally recreated the balance on the report
in the spreadsheet, that person is ready to begin the analysis of
the transactions to understand why the balance is what it is.
This manual process is performed over, and over, and over
again in today’s organizations.

There must be a better way.

PROLIFERATION

- 41 -

Report 1:
Sales by Customer by Product

Customer: ABC Corp

 Product A 150.00

 Product B 80.00

 Product C 300.20

 Total Customer, ABC Corp 530.20

Report 2:
Sales by Product by Customer

Product: A

 Customer ABC Corp 155.00

 Customer DEF Corp 200.00

 Customer GHI Comp. 133.21

 Total Product, A 488.21

A user should expect either 150.00 or 155.00
in both reports covering the same period for
Customer ABC and Product A. Perhaps they
differ because the reports are from two
different balance files, the 155.00 including
additional transactions totaling 5.00. Greater
transparency is necessary to explain the
difference.

Table 7 – Example Report Discrepancy

METRIC ENGINE

- 42 -

- 43 -

Chapter 8

TIME ZONES AND CLOCK

SPEEDS

The Periodicity of Reporting

omputers are amazingly fast at certain tasks when
compared to humans. And they have continued to
become faster year after year. But they do have limits,

and how quickly some limits are reached can be quite
surprising.

A funny thing happened while putting all these posting
processes in place: we stopped thinking about how to improve
posting, how and if innovation was possible. Few have
seriously considered if changes might produce dramatic
benefits in reporting results and better intelligence.

Given the great speed of computers, why should we make
balances at all? Computers are very efficient at adding things
up, repeatedly. If balances are copies of data and disconnected
from the details, then why make them? Said another way: when
adding up a set of numbers, one has the answer before writing
it down. Why can’t computers display or print the answer,
without storing the balance, and do that again the next time
someone asks?

Effectively if we had unlimited computing capacity, why would
we ever store balances? The answer is we would not.

Even if we had to recreate totals from the past, we could do
this by simply including date and time as part of a selection of

C

METRIC ENGINE

- 44 -

which transactions to accumulate; in other words, we could
have the computer select only the original transactions used to
calculate the balance.

Although all of this is theoretically possible with today’s
technology, barring a major technical breakthrough, it still isn’t
practical. The reason is that computers are just not fast
enough. The growth in computer speeds and capacities can
generally keep up with the growth of data, but probably not
with the growth in the types of analyses we desire, the answers
to our new questions.*

We need to understand why, but to keep from becoming too
technical here, let’s simplify the computer in our discussion to
three parts: CPUs, memory, and disk. Let’s think of it like a
meeting in a conference room, with people, a whiteboard, and a
binder of agendas and meeting minutes.

In our meeting, people do the thinking, meaning that only they
“understand” data, select the right rows, sort them, and add
things up. They are the CPUs.

They work primarily with the whiteboard, because it is visible
to all and allows things to change very quickly. The whiteboard
is memory. Memory and whiteboard space are very fast, but
limited.

That is where the binder comes in; it stores the results when
they overflow the whiteboard, or during meeting breaks. There
is much more space in the binder, but it is much slower to use.

* Dan Aminoff noted, “If the analysis requires sparse access then this is
possible – e.g., billions of people can ask for many different things using
Google, and the answers can be found across exabytes of data in
milliseconds. Since the various economies change at varying rates, it’s
conceivable much of what today is done with balances could be more
efficiently done by keeping all transactions at some point.” (Note to Author)

TIME ZONES AND CLOCK SPEEDS

- 45 -

It takes a long time to put the binder data on the whiteboard,
or to record the results of work back in the binder.

The scarcity of memory, the slowness of disk, and the transfers
required between them has historically significantly affected
reporting processes. But even the speed of processors—the
amount of work they can perform each second—is limited and
can at times become the problem.

There is one more principle we need to consider. It is time and
how it affects the entire system.

Since the earliest days of accounting and continuing into the
age of computing, the quantity of data has always exceeded the
compute capacity available to do everything with the detail.
Yet the use of posting processes to create balances has
provided pragmatic ways to overcome this limitation,
producing the analyses we have today.

Figure 2 –Computer Analogy

METRIC ENGINE

- 46 -

Our pragmatism begins by never producing all balance
permutations; we deem some combinations of attributes as
providing little insight. Others are designated as critical or
time-sensitive and are used to manage businesses very directly.
Although limited in number because of compute capacity
constraints, we produce them every morning by perhaps 8 AM
(or earlier for demanding users).

Because these critical balances contain only a subset of the
possible attributes of interest (as all balances do), we produce
the additional, more detailed balances later, again reusing the

Graph 3 – Balances by Attribute Combinations

If the x-axis is the number of attributes needed to produce a
balance, the number of possible combinations of attributes
(and thus resulting balances) likely grows with each new
attribute. At some point, the compute capacity limits
production of some balances. Balances requiring more
attributes are then produced later when more compute
capacity becomes available.

0 1 2 3 4 5

Early Balances Late Balances

Late Balance Trans Early Balance Trans

TIME ZONES AND CLOCK SPEEDS

- 47 -

transactions in separate processes. This is the point of
divergence in data supply chains: The critical balances, and
then everything else. And “everything else” is typically judged
by its agreement to the crucial balances—a judgment made
through reconciliations.

Note that we measure computer speeds in instructions per
second, cycles for a period, or gigahertz: all measures of time.

Graph 4 – Typical Daily Processing Cycle

The compute capacity constraint means that balance
creation processes must be prioritized; critical balances, like
those required by finance, must be created before 8 AM.
Other functional areas come later, like risk, MI, regulatory,
and customer analytics. This is a primary cause of
duplicative data supply chains. The balances are produced at
different times, using different aggregations of transactions,
and thus do not reconcile. New balances cannot be created
because the appropriate transaction details have been lost.

12-4 AM 4-8 AM 8 AM-
Noon

Noon-4
PM

4-8 PM 8 PM-12
AM

Time of the Day

METRIC ENGINE

- 48 -

Also, note that balances also have a time aspect to them: They
summarize results for a period.

This time aspect to balances creates a periodicity in reporting
or, at least, balance creation. In other words, a large part of
reporting is analyzing what happened over time. And that
reflection, that analysis, is periodic, removed most often by at
least some time from the last transaction. Certainly the periods
between analyses shorten as the pace of business increases,
moving from yearly to quarterly to monthly, and are getting
shorter. Yet balance creation still happens periodically.

When more frequent analysis is needed, the limited number of
transactions since the last posting process can be added to the
last balance to create a temporary balance. Doing so is possible
because the transactions are limited by the interval between
postings.

A daily frequency for a single location, it seems, is the most
likely frequency we will settle on for most balance build posting
processes.* Shorter cycles will typically remain in the
operational area or required only on certain days of the month.

As explained in the next section, the alternative to this
historical approach is to produce many more detailed balances,
but not every permutation, during the critical balance run. Said
another way, produce more detailed balances for a limited set of
attributes on a daily basis, yet maintain the linkage to the other
attributes of interest. This approach allows a single highly
tuned process to produce these balances. These more detailed
balances can then be combined to produce the more aggregated
balances needed later in the day. Doing so reduces
reconciliation because the more detailed balances are fully

* As we will see shortly if these balances are stored as movements, then
these daily balances can be accumulated into balances for longer periods.

TIME ZONES AND CLOCK SPEEDS

- 49 -

reconciled. This is a radically different approach than what we
have done with posting processes for hundreds of years.

This daily process, though, shouldn’t be taken for granted. I
have witnessed numerous projects where trying to accomplish
on a daily basis what historically was done on a monthly basis
became very difficult; cases where processes which needed to
finish in a couple of hours in the morning required more than
24 hours (and at times 50 to 60 hours) to complete. The
periodicity of reporting can be very demanding.

Some people working on these problems chose to define their
solutions as not being subject to the relentless demands of the
clock,: saying that they were building informational not operational

Graph 5 – Detailed Balances with Pivot to Alternatives

Alternatively, if many more detailed balances—including all
business critical balances—were produced by start of day, then
permutations of these balances could be produced later, and
yet all would reconcile, having been produced from the same
transaction details.

12-4 AM 4-8 AM 8 AM-
Noon

Noon-4
PM

4-8 PM 8 PM-12
AM

Time of the Day

METRIC ENGINE

- 50 -

systems. Perhaps the lack of timeliness could be excused at
that time, but our need for better information demands more
innovation. The next evolution in reporting is recognizing that
informational systems must take on more operational
characteristics.

What’s required is focusing on system performance—a near
single minded focus on performance—to significantly reduce
the time required for posting and aggregation processes.

This doesn’t require a major innovation in computer
technology. Even now, we can use time to our advantage. We
can use this daily cycle of half the world being dark to organize
the data for a designated geography. This organization of the
data, along with enhancing the scalability of the posting process
and moving it closer to the time of report production, can
remove the obstructions to more accurate and timelier
analytics, with a greater level of transparency and availability
and at sustainable levels of cost.

Manufacturing systems have changed a lot since the first
assembly lines were created. Perhaps it is time our
measurement systems caught up. Let’s consider how we might
apply more recent innovations in manufacturing to the world
of quantitative analytics to make a metric engine.

- 51 -

Chapter 9

JIT MANUFACTURING

 Just-In-Time Analysis

uto manufacturers invented the assembly line over a
century ago. To set up an assembly line, one must
determine specifically what output to produce—which

type of vehicle, for example—and then configure the line to
produce that output.

One challenge with this model is that it depends upon
forecasting demand for the outputs. If these projections are
wrong, then either potential sales are lost or surplus goods are
produced. The costs can be substantial.

Posting processes are similar to these assembly lines. We
configure systems to produce the balances before we turn them
on, and once turned on the posting processes cannot produce
other types of balances; we produce balances (and reports) no
one cares about any longer and likely we don’t produce the new
balances needed to solve today’s problems.

More recently, a new production strategy called just-in-time
manufacturing was devised. Rather than producing and
holding completed goods, workers configure the assembly line
to hold components closer to raw materials in an organized way
so that at the receipt of an order, the line produces that specific
unit. This reduces the risk associated with forecasting.
Personal computer makers were leaders in this approach.

A

METRIC ENGINE

- 52 -

A similar approach could be applied to report balance creation.
Our assembly line would use data closer to the transaction-like
raw materials and assemble balances much closer to when they
are actually requested or needed.

Yet for analysis requiring more than hundreds of thousands of
transactions, we cannot simply keep the transactions in their
raw form on the assembly line. Today’s balance assembly
line—today’s computer resource—is sized for today’s
workload. The volume of the transactions produced over many
days would overwhelm it, and with our current systems, the
cost of massive new capacity is difficult to justify.

This isn’t much different from just-in-time PC manufacturing.
PC lines don’t begin with raw materials like silicon for CPUs,
petroleum for plastics, and raw copper for wiring. It isn’t
necessary to go to the extreme for ultimate flexibility. The
CPUs, optical disk readers, and graphics cards are
subassemblies manufactured (perhaps at third-party suppliers,
with their own just-in-time assembly processes) prior to
arriving at the main line.

The manufacturing process for balances does have to change
from our historical approach. Just-in-time manufacturing
means we are attempting to eliminate the warehouse as much
as possible, and the subassemblies have to be more flexible to
be used in many more configurations.

So what would these subassemblies look like for our balance
build processes? I propose that the equivalent in balance
manufacturing is to make the first-level posting process
produce just daily changes in balances at a much lower level of
detail than the balances we have made historically. Doing so
opens up follow-on innovations.

Rather than summarizing away all details, maintaining daily
changes in balances for something like an individual

JIT MANUFACTURING

- 53 -

customer/contract or vendor/contract combination provides
tremendous flexibility in subsequent aggregations. Producing
these balances eliminates the initial need for many of the more
detailed transactions, and yet does not destroy as many of the
attributes of potential interest to those who would “order”
manufactured balances of various types.

Most questions asked outside the operational systems do not
begin with questions about specific customer or account
transactions. Rather, they are about various aggregations of
many customers and the combinations of accounts or contract
details. Thus we can eliminate detailed transactions through
these low-level postings. Transparency may require drill-down
to specific customers, but answers typically begin as
aggregations.

In summary, our “assembly line” needs a way to accept a
request (similar to an order for a new PC) and then manipulate
these detailed prefabricated balances to create the requested
balance. Doing so efficiently can be very challenging. We must
use time zone windows very effectively to prepare the
components from the raw materials and put them on the
assembly line, and then manufacture the balance so that the
user is not waiting too long.

METRIC ENGINE

- 54 -

- 55 -

Chapter 10

THE METRIC ENGINE

Trusted, Aggregated, Structured Data

earch engine technology has developed rapidly over the
last decade and a half. It is an assembly line for a slightly
different kind of answer than a quantitative metric. It has

raced ahead of the older and more slowly developing posting
engines.

Search engines provide aggregated views of tremendous
amounts of qualitative (not quantitative), textual (not numeric)
information, aggregated in the sense that we often find the
answer to our question in the search result listings without
drilling into the details. Yet they are less useful for quantitative
analysis. Consider these questions:

When was the last time you entered a number into a search
term, except for an address or a year? It is likely not recently.
We typically search textual, not numeric, data in an Internet
search engine*.

Have you ever wondered about the quality of the results to
these searches? Largely, search engine results are information

* An exception is the Wolfram Alpha search engine, at
www.wolframalpha.com, which encourages searching for quantitative data.
However, this engine is not intended to accumulate large amounts of
transactional data to produce a balance.

S

METRIC ENGINE

- 56 -

people give away freely, or perhaps sell at advertising rates,
probably not the highest value data.

Lastly, what was the structure of the information returned by
the search engine? It mostly tends to be unstructured data. The
words on this page are unstructured. Structured data, on the
other hand, tends to look much more like the columns and
rows in a table or a spreadsheet.

The amount of structured data—data in spreadsheets—not
released on the Internet likely dwarfs the structured data which
has been released in both quantity and value. This is because
the majority of structured data is deemed to be high value;
companies promise customers that they won’t release it and
governments mandate they don’t.

So if Internet search engines aggregate largely unstructured,
textual, qualitative information, much of moderate value, what
processes aggregate quantitative, high value, structured data?

Figure 3 – Quality and Types of Information

Textual
Qualitative

Unstructured
Information

Numeric
Quantitative
Structured

Information

High
Value

Moderate or
Unknown

Value

Some Personal
and Opinion

Blogs

Most Audited
Footnotes to

Financial
Statements

Most Audited
Financial

Statements
Tables

Some Market
Research and
Business Plan
Projections

THE METRIC ENGINE

- 57 -

The answer, of course, is posting engines, the systems built and
maintained inside organizations for decades now, some of the
oldest systems in business, like the general ledger systems.
They are the bedrock of the capital markets. Are the numbers
they produce relevant in today’s world? Just consider what
happens every time earnings by an actively traded company are
released. The quantitative results move the market, affecting
trillions of dollars every day.*

Why haven’t companies simply applied an internal search
engine to this problem? The primary reason has been
aggregation. Aggregation produces balances. The assembly
line for a search engine has not included this step. Could it
include this step? Certainly. Will it? That remains to be seen.

To date, a search engine typically presents each occurrence—
each “transaction” if you will—individually. An Internet search
of a common term with billions of occurrences will show each
occurrence if we click “Next” long enough, but aside from the
count of returned results, nowhere can we see the accumulated
impact of all those occurrences.

Additionally, by its nature quantitative data isn't easily digestible
by search engines. Imagine a search engine result-page showing
row after row of data from a spreadsheet. How useful is that?

Yet in spite of these differences, this more recently developed
search engine manufacturing process can perhaps help us
understand possible new approaches to quantitative analysis.
Let’s drill down on its steps of production to see if innovation
in quantitative analysis—creation of a metric engine—is
possible.

* Admittedly, this highly summarized, quantitative information is released
and found on the Internet and in many search results.

METRIC ENGINE

- 58 -

- 59 -

Chapter 11

GATHERING TRANSACTIONS

Supply Chain Part 1

et’s compare and contrast textual and numeric data
supply chains—the manufacturing processes for
qualitative and quantitative analytics.

First off, consider the evolution that occurred early within the
Internet search engine data supply chains: Many of the first,
large search engines were really directories, maintained by
people. People would find interesting web sites and categorize
them in a hierarchical structure of topics. It did not take long
before growth in data volumes forced them to abandon
attempting to impose an organized hierarchy of answers to
predefined questions.

In the quantitative world, in some respects we are still using
directories. Our predefined posting engines produce one type
of answer: the summary-level posted outputs defined at system
startup time. How would we move away from directories to
automated search engines?

Automated Internet search engines (as opposed to search
directories) begin manufacturing the material that will be used
to generate answers by ingesting and organizing raw data. They
do this through something called spiders or crawlers, which
access web pages periodically and take a copy of the data to add
to the search engine database. They organize the inputs instead
of trying to predict the questions.

L

METRIC ENGINE

- 60 -

This approach makes sense for quantitative analytics as well.
What changes in business organizations more rapidly, the types
of analysis we do or the types of business transactions—better
termed business events—we undertake? The answer is that
analyses change much more rapidly. The vast majority of the
core operational functions have changed little over the last
decade and in some industries over the last 50 or more years.
The technology might have changed, as with the introduction
of the Internet, but the types of business transactions,
particularly those with financial implications, for the most part
are very stable.

It is much simpler to organize the input for analytical processes
than to anticipate the potential outputs that will be required
from them.

Today’s posting process have spider- and crawler-like
equivalents to gather the details. In recent times we’ve called
them Extract/Transform/Load (or ETL) processes. Earlier
systems, particularly financial systems, had components called
Accounting Rules Engines (or AREs), performing similar functions
for financial transactions.

As we’ve noted, quantitative analysis normally deals with fixed
reporting periods, and, as a result, puts more demands on the
supporting infrastructure than text search does. If I make an
update to my web page, but a search engine web crawler
doesn’t access it for a week and update the search database,
search results may be out-of-date for a few days, but would be
fine once the database was updated. If, on the other hand, I
am measuring daily sales for each store and looking for trends
over time, then accumulating two days’ worth of sales into one

GATHERING TRANSACTIONS

- 61 -

day’s balance would certainly skew my analysis from that point
forward.*

The search engine’s capture of the web pages could be thought
of as a snapshot of how things look at one point in time; how
the web page looks when the web crawler accessed it. On the
metric side, it is also possible to pull “snapshots” as well, and
some systems do this to save time and expense in construction
and storage. They extract the accumulated balances in the
source data system and ignore the transactions. For example,
the checking account system holds the end-of-day balance for
that account as well as each check and deposit transaction.†

Having only snapshot-based metrics limits the types of analysis
we can do. For example, the end-of-day balance tells me
nothing about the activity in that account throughout the day.
If I made a $1,000,000 deposit and wrote checks for that same
amount, my end-of-day balance would be the same as the prior
day. When compared to the account for another customer who
had no transactions on that day, my account would look the
same. That missing information is critical for many metric
analyses.

Thus, our system, to answer a broader set of questions, should
pull transactions, not snapshots.‡ These transactions can be
used to track balances that are not netted like many source data

* A sophisticated quantitative posting engine can backdate transactions to
the appropriate period no matter when they are presented for posting; many
systems are not able to do this in an easy or comprehensive manner.

† These balances are updated through a posting process in the operational
system

‡ Accounting rules engines (AREs) typically use transactions: Journal entries
are representations of transactions.

METRIC ENGINE

- 62 -

system balances, or subject to other shortcuts for the
convenience of the source data system.

A final point on this data sourcing process: The term
“Transform” in ETL means “translate into a common
language.” To aggregate data and produce a measurement, it
must be in the same language or code set. If we want to know
the total balance for a single banking customer who has a credit
card, checking account, and mortgage, the customer ID used to
aggregate the records must be the same on all three records.

Contract
ID

Transaction
Type

Date Amount

A75234 Fees Paid Jan 3 (3.45)
34985 Buy 4-1 -341.32
5674 Sold 5 January 310.21

Original Transactions

Contract
ID

Transaction
Type

Date Amount

3 Fees Paid January 3 -3.45
4 Shr. Purchase January 4 341.32
5 Shr. Sold January 5 -310.21

Translated Transactions

The top three rows show originally recorded
transactions. Note that dates, contract IDs, and
even amounts are not recorded in the same
manner. These transactions can be conformed to
a common language in the translated transactions.

Table 8 – Translation to Common Langauge
Movement Example

GATHERING TRANSACTIONS

- 63 -

If the checking account is stored as “Hello,” our search engine
would not automatically find the associated mortgage stored as
“Hola,” the Spanish greeting. Search engines can translate
outputs upon request, but they typically don’t translate inputs.
Metric engines must translate inputs to be useful.

Metric engines must do this because we can’t afford the
translation time for all the required transactions when
manufacturing an answer. And translation isn’t just a problem
between countries; even within the same country typically each
source data system uses a different “language” to record its
transactions. If we don’t put them into a common language,
we won’t be able to aggregate the transactions to get to a
balance for the customer or for other report attributes later.

This translating process may have aspects of what some call
“data cleansing.” Data cleansing or clean-up must be done
carefully; as in antiques, what is one man’s grime is another’s
patina. We have to get to consistency in order to create
balances, but destroying the originating data in the process can
inhibit the value of analysis available.

A related point is determining when to adjust data. In some
cases, data is known to be incomplete or even wrong. Again,
when adjusting, it is best to enter adjustments as new business
events or transactions, which allows questions on original
values and adjusted values to be answered.

How to determine what to cleanse or to adjust? Both are like
cleaning a room. The first step in cleaning is to turn the light
on, and turning the light on in data systems means reporting on

METRIC ENGINE

- 64 -

it. Exposing the data through reporting of some kind will
facilitate more data cleansing than any other approach.*

So our data preparation processes will have some of the same
basic functions, but will also be different in some respects.
Now, let’s consider the next leg of the supply chain: creating
the low-level balances. This is the next step in the
manufacturing process.

* Perhaps the closest analogy in the Internet search world is the “data
cleansing” required by mandate for search engines not to show some types
of harmful or sensitive web pages.

- 65 -

Chapter 12

LOW-LEVEL POSTING

Data Supply Chain Part 2

o we’ve gathered, translated and organized the
transactions, but we’ve agreed rather than just use
transactions we require the use of many aggregates that

accumulate over time, showing the impact over months and
years. To efficiently use compute resources and not have to
recalculate the balance from last year’s transactions before
getting to today’s balance, we must perform some level of
posting process in the metric and balance-based data supply
chain.

Here we diverge from the Internet assembly line analogy quite
dramatically for the next step, because creating balances is a
step that search engines do not do. So although the data
preparation in the prior chapter and the final aggregation in the
next chapter have analogous components in the search engine
world, this aggregation step is unique to metric engines.

This step allows us to use lower compute capacities, because
balances show a position without having to manipulate all the
transactions from the beginning of time. Doing this step
correctly will dramatically enable quantitative analytics.

We’ve found that balances by themselves present challenges
when the data gathering process isn’t flawless. For example, if
data wasn’t gathered from a source three days ago and balances
have been made each day since, the correction process involves
more than just correcting the balance from three days ago; each

S

METRIC ENGINE

- 66 -

subsequent day’s balance must also be corrected. Our
computer capacity may allow for three days of reprocessing,
but likely not 23 days.

An easy solution is to avoid making true balances; we can
instead post accumulated changes in balances each day, creating
something called a summary movement. This simplifies the update
problem, requiring only one value to be changed when

Row
ID Record Type

Balance
Date Amount

1 Balance January 1 1,020.00
2 Balance January 2 1,020.00
3 Balance January 3 1,030.00
4 Balance January 4 1,030.00
5 Balance January 5 1,022.44

Balance Table

Row
ID

Movement
Type

Movement
Date Amount

6 Opening Bal January 1 1,020.00
7 Dividends January 3 10.00
8 Fees Paid January 5 -7.56

Movement Table

The first table above shows pure balances, whereas
the second table shows movements. We can
calculate any value in the first from the data in the
second. If we receive row 7 for posting after row
8, we must update rows 3, 4 and 5 if balances are
kept. If we calculate balances dynamically from
movements, we need no updates.

Table 9 – Movement Example

LOW-LEVEL POSTING

- 67 -

transactions requiring backdating are encountered. However,
this also moves a portion of the work from this phase to the
final aggregation phase. We will have to aggregate these
summarized movements to arrive at the final balance.*

Daily changes in balances provide very flexible building blocks
(manufactured subassemblies) for most of our time
dimensions. They can be accumulated to longer periods, used
to calculated averages, added together to show a position at
many points in time, and easily updated for backdated
processing.

But what are the classifying attributes of the balances we need?
Something has to describe what the balance is for: the yellow,
flat, skinny types of attributes. The attributes typically are a
subset of the attributes of the source transactions, so let’s start
there.

Transactions often have something like a time stamp, which
usually will not aggregate with any other transaction to make a
balance. Even if we step back from this extreme case, some
attributes aggregate so little that we will effectively have
transactions even with aggregation, and we can’t use
transactions because the data volumes would grow too large.
This leads us to drop some uniqueness in the aggregating
attributes. So in creating balances, there will likely be some
transaction attributes our assembly line will not have readily
available for downstream analysis without going back to the
original transactions.

* Throughout the remainder of this discussion, we will use the words
balance and movement interchangeably, whether referring to a true balance
or an accumulated change (i.e., summarized movement) in a balance.

METRIC ENGINE

- 68 -

We therefore must choose which attributes will have a running
balance (or movement) kept for them and which will be
accessible only on transactions. A balance for any attributes

Fund
ID Fund Name Risk Type

Date
Purchased

1 Fund A Aggressive 1998
2 Fund B Aggressive 2001
3 Fund C Moderate 1998

Mutual Fund Attribute Tables

Fund
ID

Balance/Trans
-action Type

Balance
Date Amount

1 Opening Bal January 1 1,020.00
1 Dividends January 3 10.00
1 Fees Paid January 5 -7.56
2 Opening Bal. January 1 378.00
3 Opening Bal January 1 737.32
3 Fees Paid January 3 -3.45

Low-level Balance or Transaction Table

We could store the “Date Purchased” on each
balance, but Fund ID 1 in the bottom table would
have “1998” duplicated on each row. By using the
Fund ID, we can link these two records together
when needed.

Table 10 –Balance Attribute Example

LOW-LEVEL POSTING

- 69 -

not kept as a running balance will require transaction
accumulation, literally recalculating from details*.

Understanding the resolution to this conundrum of how to
organize the data is at the heart of the solution to our current
problems. This requires us to consider a rather technical
subject called data modeling. Let’s see if we can make this
subject a little more approachable.

The solution might be informed by what we do in the
operational systems. Source data systems typically hold
individual daily contract or product balances. This level
maintains access to all the attributes for customer, contract, and
product, yet does not place those attributes on each balance; we
don’t burden the source data system low-level posting
processes with all those attributes. See Table 10.

For example, we may know that a customer’s mortgage interest
rate is 5%. We could duplicate this value, recording it on every
transaction, every payment, every interest amount calculation,
every transaction—but why? It would simply duplicate the
same data over and over again. Storing the data only once is
called normalizing the data. Not doing so is called denormalizing.

In the search engine world, we denormalize the data in a sense.
We require all the words we want to search for to be on the
same webpage, even if this causes duplication of data on more
detailed pages for things like the company name. But doing so
on structured transactional data will expand the data volumes
significantly.

* Alternatively, we could actually choose to maintain multiple summary
structures that require reconciliation; maintaining two reconciling data supply
chains is still much less expensive than maintaining ten.

METRIC ENGINE

- 70 -

Rather than keeping these same attributes on each balance, we
could instead store the customer contract ID, a single value
that is repeated on each balance identifying it as this specific
customer’s mortgage. We could then use this identifier to
“join” the balances to all the associated contract attributes, like
interest rate, when needed.

Joining is a very simple exercise of finding one record’s “key”
or unique identifier value on another record. We manually join
data when we use the phone number from the phone bill and
search for the corresponding name in our contact list. Thus,
the phone number “key” in a way gets us to all the other
attributes of the person. See Table 11.

So we need a key for the customer or vendor and for the
contract/product attributes. Along with this key, the other
attributes needed to classify the low-level balances are
remarkably few. Low-level balances can be summarized by
time period (typically a day), currency (transaction, functional,
reporting), company (legal entity, the company that owns the
balance), a type (something like a general ledger account will
often suffice, such as revenue, cost, type of expense, principal,
fees, and so on) and a few other attributes.

We can maintain the customer, vendor, contract, and product
details on separate structures, and link from these to the low-
level balances, through the permanent identifier or a key that
does not change, such as a customer-contract-product number.

Let’s use another simple example, as shown in the Tables 14
and 15 at the end of the chapter. Suppose you hold multiple
mutual funds, each with a risk designation—aggressive,
moderate, or conservative—and you want (1) a report of the
balances in your mutual funds by risk and, (2) a report by date
purchased. We could create two posting processes for two
separate master files, one for each report. Every time you buy

LOW-LEVEL POSTING

- 71 -

or sell a mutual fund, pay a management fee, or receive a
dividend, we accumulate the balances by the risk in one file and
by date purchased in another file.

Alternatively, we could have one balance file with the mutual
fund key, and a separate mutual fund attribute table with the
same key. This second table doesn’t contain any transaction
amounts or balances, just attributes describing the mutual
funds, like risk designation and mutual fund purchase date.

Fund
ID Fund Name Risk Type

Date
Purchased

1 Fund A Aggressive 1998

Mutual Fund Attribute Tables

Fund
ID

Balance/Trans
-action Type

Balance
Date Amount

1 Opening Bal January 1 1,020.00
1 Dividends January 3 10.00
1 Fees Paid January 5 -7.56

Low-level Balance or Transaction Table

Fund
Name Risk Type Date

Balance
Amount

Fund A Aggressive January 5 1,022.44

Temporary Reporting Record

We can combine the top four records in memory
(the bottom three needed to change movements to
a true balance) to temporarily create the last record
for reporting.

Table 11 – Join Example

METRIC ENGINE

- 72 -

Thus, this file isn’t updated in the posting process and doesn’t
require reconciliation.

To manufacture our reporting balances, we can combine these
two tables, or join them, temporarily bringing these records
together with all the fund attributes and the balances. Yet we
never store this record, keeping the balances independent of
the reporting attributes that need them.

We use this temporary record like a transaction to aggregate to
both reports. Doing so produces two different reports off of
one single data supply chain. We have only one posting
process maintaining the low-level balances. Producing two
outputs from one posting table starts the process of
consolidating data supply chains.

One additional enhancement: Let’s make our key to the
attribute table include the effective date for the attributes—the
date this set of attributes took effect. For example, by adding a
new record whenever the risk attribute changes and specifying
which date to use in the join, we increase even further the
number of potential outputs from the same set of data. This
includes the ability to reproduce reports from a prior (or even
future) point in time because the computer puts the data back
together as it was (or will be) at that point in time. (Table 12)

Let’s consider one more aspect to the low-level posting
process. We’ve discussed the need to translate attributes into a
common language to allow aggregation. There may also be a
need to translate the amounts on our records as well, so that
they can be aggregated. For example, if a balance attribute for
a mortgage payment in the US contains “Mortgage-Pay” and in
Brazil it is “Hipoteca-Pagamento”, obviously those two
attributes will need to be translated into a common value if we
wish to accumulate the balances associated with each.
However, if the US Mortgage Payment is denominated in US

LOW-LEVEL POSTING

- 73 -

Dollars, and the Brazilian in Reals, the aggregated balance will
be meaningless. We can’t add Dollars and Reals and get a
meaningful metric.

The process of getting these values into a common base is
called multi-currency processing (see Table 13 and the appendix).
Performing this and similar functions, requires us to generate
new transactions showing the values in the selected common
currency. The number, diversity, and complexity of these

Fund
ID

Effective
Date Fund Name Risk Type

1 January 1 Fund A Aggressive
1 January 4 Fund A’ Moderate

Mutual Fund Attribute Tables

Fund
ID

Balance/Trans
-action Type

Balance
Date Amount

1 Opening Bal January 1 1,020.00
1 Dividends January 3 10.00
1 Fees Paid January 5 -7.56

Low-level Balance or Transaction Table

Fund
Name Risk Type Date

Balance
Amount

Fund A Aggressive January 1 1,020.00
Fund A’ Moderate January 5 1,022.44

Temporary Reporting Record

The first temporary record is joined as of the 1st of
January, but the second is as of the 5th, using the
Mutual Fund attributes effective beginning the 4th

Table 12 – Effective DateExample

METRIC ENGINE

- 74 -

similar processes shouldn’t be underestimated. They might
include allocation processes which divide our metrics into
smaller units and assign them to other owners; transfer pricing,
which determines what something costs when there is no
natural market; and consolidation and elimination processes,
which identify particular transactions for inclusion or exclusion
in reporting processes.

Because of the volume of data and processing requirements
involved, these processes would typically be performed as part
of the low-level posting processes. In some cases they require
the business event transactions be applied first, and then these
functions are performed on the resulting balances; in other
cases, they may be done on the individual transactions and then
the results accumulated. These processes are a bit like creating
new transaction systems using the originating transaction
systems as input.

All of this work we’ve described could be thought of as a
subassembly process, something like preparing CPUs, hard
disks, and video cards before the main assembly process for the
PC.

The process of preparing these components then looks like
this:

1. Prepare the customer contract attribute file, updating or
inserting new rows as attributes describing customers,
contracts, and products change. These structures
typically do not entail amounts in need of posting.

2. Translate transactions into a common language or code
set because each operational system will typically have
its own code set and data structures.

3. Post transactions to make the needed low-level balances
with the consistent key noted, and store the summary
movements on a daily basis.

LOW-LEVEL POSTING

- 75 -

4. Perform other analytical processes, such as multi-
currency, and apply those transactions to the balances
as well.

Currency Date Rate
Change in

Rate

CAD-USD Jan. 1 0.860720 N/A
CAD-USD Jan. 2 0.852122 -0.008598
CAD-USD Jan. 3 0.848572 -0.003550

Exchange Rates

Fund
ID

Balance/Trans
-action Type

Bal.
Date

Cur-
rency Amount

3 Opening Bal Jan. 1 CAD 737.32
3 Fees Paid Jan 3 CAD (3.45)

Source System Transactions

Fd.
ID

Balance/Trans-
action Type

Bal.
Date

Cur-
rency Amount

3 Bal. Conversion Jan. 1 USD 634.63
3 Bal. Revaluation Jan. 2 USD (6.34)
3 Bal. Revaluation Jan 3 USD (2.62)
3 Fee Paid Conv. Jan 3 USD (2.93)

Currency Exchange Transactions

A Canadian fund requires conversion into US
dollars, each transaction converted at the day’s rate,
each new day’s balance revalued for any change in
exchange rate; all these transactions, summarized as
balances, and then used in US dollar reports. (See
Appendix for calculations)

Table 13 – Foreign Currency Example

METRIC ENGINE

- 76 -

All these steps would typically be done throughout the night,
immediately following the source data system daily processing. *

In summary, the breadth of the outputs possible from our data
supply chain is dependent upon the level of detail in this part of
the assembly line. If we assemble all of the “laptop” except the
display, then we can vary only that one component on the
output. If we discard most of the transaction-level attributes of
potential interest early in the supply chain, our potential
outputs will similarly be limited.

On the other hand, if we can vary 20 components in our
manufacturing processes, we can produce unlimited much
broader number of different outputs. If we have these
customer contract attributes available in the next stage of
manufacturing, we can produce a huge number of outputs.

All the web crawling and database populating performed
continually prior to a web search are hidden from the person
entering a query—but it is critical to satisfying the query in a
reasonable time. All preparatory work on the quantitative
analytical side is similarly invisible to the end user. But it is
critical to the next step: producing the final outputs.

* We’ve assumed throughout this book that radical changes to the source
data systems are out of bounds. If we were able to make operational data
structures consistently across all source data systems, we may ask the source
data systems to prepare and hold the raw materials necessary for
manufacturing answers. Requiring this elongates the implementation
timeframe dramatically.

Additionally, we’ve assumed given the age of most of these source data
systems in most large organizations, they are typically batch processes. The
principles are the same, however, for real-time systems. If the buckets
maintained for analysis remain daily (rather than hourly or something
shorter), real time system data will accumulate in the posting engine until the
period end for final posting.

LOW-LEVEL POSTING

- 77 -

METRIC ENGINE

- 78 -

Fund
ID Fund Name Risk Type

Date
Purchased

1 Fund A Aggressive 1998

2 Fund B Aggressive 2001

3 Fund C Moderate 1998

4 Fund D Conservative 1998

5 Fund E Aggressive 2000

Mutual Fund Attribute Tables

Fund
ID

Balance/Trans
-action Type

Balance
Date Amount

1 Opening Bal January 1 1,020.00

1 Dividends January 3 10.00

1 Fees Paid January 5 -7.56

2 Opening Bal. January 1 378.00

3 Opening Bal January 1 737.32

3 Fees Paid January 3 -3.45

4 Opening Bal January 1 247.31

4 Shr. Purchase January 4 341.32

5 Opening Bal January 1 2,320.21

5 Share Sold January 3 -310.21

Low-level Balance or Transaction Table

Table 14 – Multiple Report Input Example

LOW-LEVEL POSTING

- 79 -

Mutual Funds by Risk Type

Risk Type: Aggressive

 Fund A 1,022.44

 Fund B 378.00

 Fund E 2,010.00

 Total Risk Type, Aggressive 3,410.44

Report 1: Mutual Funds by Risk Type

Mutual Funds by Year Purchased

Purchase Year: 1998

 Fund A 1,022.44

 Fund C 733.87

 Fund D 588.63

 Total Purchase Year, 1998 2,344.94

Report 2: Mutual Funds by Year Purchased

We can produce both reports above using the
prior table input data, by joining Fund IDs, and
aggregating by Name, Risk or Date. For example,
Fund A, (ID 1) is Aggressive, purchased in 1998.
The opening balance of 1,020.00 and an
accumulated dividend of 10.00 less fees of 7.56
equal the 1,022.44 above. Opening balances
eliminate the need for historical transactions of
less value.

Table 15 – Multiple Report Output Example

METRIC ENGINE

- 80 -

- 81 -

Chapter 13

HIGH-LEVEL AGGREGATION

Data Supply Chain Part 3

ow we return to the processes that are analogous to an
Internet search engine. These remaining steps are
where search engines have advanced far beyond the

metric engines of yesterday.

Answering an Internet query involves two basic steps: Select
and sort. A metric query will require these two steps, and one
more: summarize or aggregate. We have performed one level
of aggregation in the low-level posting, but most analytical
queries require much more aggregation.

We are all quite familiar with the selection process in an
Internet query. The function would need to be close to the
same in our metric engine, but there are a few differences
worth noting.

First, be clear that our metric engine needs to be selecting low-
level balances records linked to customer or vendor and
contract details to be used in the final set aggregation process. In
other words, we must select before we aggregate. This is
necessary to answer questions like “What is the total ticket
value of all elite frequent flyers who flew to Florida last week?”
We have to select Florida flights by frequent flyers before we
can aggregate to the total value metric.

Second, with the data we’re likely to get today, we have a bit of
a syntax problem. Structured data for the most part, doesn’t

N

METRIC ENGINE

- 82 -

have the descriptors on it that text on web pages have. So the
data might contain the value “31” in the “company number”
position, not some readable text like “Company 31”. This
obviously can be overcome in some way, either through the
translation process (which might increase data volumes if the
newly assigned tags have to be stored) or through the query
process (which might increase the response time for the user
building a query).

In both an Internet and a metric search we vary the length of
the query—and thus the specificity of the query—depending
on our needs. In some cases we want a range of records, for
example, the total sales for each product sold in New York and
Ohio. The query would find all sales transactions in the states
of New York and Ohio, but to aggregate correctly, the
transaction must also contain the product number. We don’t
want the total for all products in a state; we want the total for
each product in each state.

To do this, the computer will need to be able to accumulate all
transactions for each state and product. So after selecting the
transactions to accumulate for the balance or balances, the next
step is to sort these records. In this example, we would sort the
transactions in order by state and by product during the
aggregation of these records. When the computer encounters a
new state or product, it begins a new accumulator.

Internet search engines perform a form of sorting when
attempting to rank the pages most likely to be of interest at the
top of the results. Our metric processing requires sorting to
facilitate aggregation.

We must allow for a difference between the order in which the
fields appear on the transaction record or stored in our system
and the order in which they are sorted. Predefining which
accumulators will be held is a form of a static posting process.

HIGH-LEVEL AGGREGATION

- 83 -

Another optional step at this point is performing calculations in
some way to manipulate the balance. In certain instances, the
low-level posted balance is adjusted based upon dates, risks,
and other types of factors. This process is creating a new
balance, perhaps temporary (and perhaps un-posted) to be
summarized in the last step.

The last step for many types of analysis is to summarize or
aggregate the transactions. The contrast from a textual search
is important. A textual search can present a new page of results
each time a user clicks Next; if the internet engine’s index
presents data in relevance order, each click requires only one
more page of data to be read and displayed.

Aggregation is different. Aggregation requires that the engine
must use each record to accumulate the overall aggregated
balance. Thus, the data volumes for this step of the process
become much higher than those for a typical textual search,
which has a natural pause between each click of the Next
button.

Let’s also add that in our query we need to be able to specify at
what “level” we want to produce subtotals or balances. Do we
want balances for all of New York, or for each Store in New
York, or for each Customer at each Store in New York, or for
each Product purchased by each Customer in each Store in
New York? This discussion could continue by considering
hierarchies, roll-ups, reorganizations, recursion, and more, but
in the interest of brevity, we’ll forbear.

OK, so now we’ve completed our comparison between the
Internet search engine and the metric engine I’m proposing.
But we haven’t examined the most important point. Consider
how quickly an Internet search engine trolls through the myriad
individual web pages to give us an answer to our question.

METRIC ENGINE

- 84 -

Instead of creating answers to predefined questions, it allows us
to ask any question we want. This is just-in-time
manufacturing at its best—nearly instantaneous manufacturing
to our textual questions.

We could never hope to accomplish the same thing if we tried
to use individual transactions with today’s technology. But
creating intermediate balances at a low level of detail may make
it possible to do so, or at least get closer. Given enough
compute capacity, users may query lower and lower levels of
detail to achieve the transparency needed. Effectively drilling
down is simply creating another query in an automated way.
Such a system would be very powerful indeed.

From a distance, the system might look a little
bit like two pyramids stacked on top of each
other. From the tremendous diversity in the
source data system layer, with tens of
thousands of attributes, business events
would be organized into a few attributes

classifying detailed balances in the middle, and then pivoted
into tens of thousands of analytical outputs at the request of
the end users at the other end of the system.

- 85 -

Chapter 14

SCALE

Producing the Goods

teps 1 and 2 of our manufacturing process typically
happen the same way throughout each night. Yet if we
wish to avoid the traps of predefined posting processes,

step 3, high-level aggregation, must be allowed to vary each day
and need to happen much closer to the time of query. Doing
so requires very efficient use of our computing resources.

We must combine the low-level posted balances and then join
them with static data about customers, vendors, and products
accessing additional attributes in very specific ways very
quickly. The more difficult questions to answer are not about
one specific customer’s mortgage balance; we can use the
source data system for that. A more difficult problem is
calculating the average mortgage balance for all loans maturing
in the next six months. This requires accumulations of data
from many sources or from long periods or both. This might
also require processing large numbers of low-level balances.

As we’ve noted, the critical issue is the speed of computers.
The convoluted nature of today’s data supply chains is
primarily a reaction to the speed of processing.

To provide answers to questions with a reasonable response
time, our legacy systems post to summary structures, reducing
the response time for the query because each answer is readily
available in the posted file. This reduction in user response

S

METRIC ENGINE

- 86 -

time continues as more and more summaries are created, to
answer more and more questions.

However, correspondingly, the system has to perform a posting
process for each transaction received against each of these
summary structures. This is typically done during the nightly
transaction processing cycle, not at report time. At some point,
the reduction in response time for a user is less than the
additional update time for posting because not all answers in
the summaries are used.

This interior minimum point is likely reached in most
organizations with today’s system configuration, at the expense
of being able to easily answer questions not provided by the
existing supply chains, and the cost of supply chains that are no
longer insightful.

This point is typically met within a geography by the start of the
query process, which typically is the start of the business day.
In most environments the major data supply chains cannot
begin until after the source data system end-of-day processes

Figure 4 - Summary Response Impact

SCALE

- 87 -

are complete. This is in the early hours of the morning for
those with the highest volumes or most complexity. *

And because there are a set of balances that must be created to
manage the business first thing in the day (Graphs 3, 4 and 5),
this becomes the critical point at which the data supply chain
must produce the majority of balances required, to minimize
reconciliation between different data supply chains.

This leaves a space of perhaps four or five hours for the data
supply chains to process data gathering (step 1 in Chapter 11)
and low-level posting (step 2 in Chapter 12).

Historically, by using summarization either in the source data
systems or soon after, these existing systems typically operate
on tens of thousands to hundreds of thousands of records.†
Time typically needs to be reserved to handle unexpected
conditions, and so typical processing is tuned to finish in
perhaps two hours’ time.

Targeting our low-level posting process to keep customer
contract details has an explosive effect on the volumes
processed in the major data supply chains. In banking, for
example, a sizable organization might have 20 million
customers, each customer holding perhaps two or more
accounts, like checking and a car loan, for example. This
means the low-level balances maintained in the system are

* A global organization is typically partitioned by major geographic locations,
providing perhaps three major regions for end-of-day processing: EMEA,
Americas, and Asia.

Rewriting all the source data systems, valued in millions and in some cases
tens of millions of dollars in investment, is consider impractical for making
real progress on these issues in a timely manner.

† This is typically the General Ledger level volumes.

METRIC ENGINE

- 88 -

typically multiplied by 40 million or more when compared to
summary level supply chains like the General Ledger.

Organizations do not keep a lot of spare compute capacity on
the shop floor due to costs. It’s absurd to think that the
technology used to process tens and hundreds of thousands of
records can be scaled without enormous expenditure (if it’s
even possible) to tens of millions of balances with the
associated posting processes.

How then should we configure them to solve the basic posting
problem more effectively? Remember that computers are like a
meeting, with people for CPUs, a whiteboard for fast
temporary memory, and a binder for slow permanent memory.
(See chapter 8)

To speed things up, many reporting applications now store
large amounts of data in an in-memory database, satisfying a
very large number of reports that only a few years ago would be
unthinkable. But we shouldn’t assume that all data for all
permutations of reports at the transaction level will cheaply fit
into memory.

If we design as if everything will fit into memory, we may have
a critical constraint if it does not; this memory limitation may
become the output constraint for the data supply chain.
Assuming at least some disk configuration will reduce the cost
and provide a safety net should we need one.

Let’s be clear about the challenges of using large amounts of
disk. Disk is so much slower than memory, 1,000 times slower
than memory. No one will use the metric engine if, upon
clicking “search,” instead of waiting 1 second we wait 1000
seconds—over 15 minutes!

So how do we make access to the data in the binder faster?
Well, one way is to create indexes, which means we would

SCALE

- 89 -

bring smaller amounts of data into memory to search for the
location of the exact data we want. This is one approach to the
problem.

However, indexes for data tend to be like indexes in books,
where someone has to decide what will be important to search
for so the index can be created. Also, the index doesn’t often
give us the data we need; just like a book index, we have to turn
from it to the actual page to find the data. So, in some cases
indexes simply end up using more memory, disk and processing
time.

If we have enough outputs to produce from the same data, it
can be more efficient to organize it for a massive scan, wherein
we go through the database once. Perhaps this is the lowest
cost alternative, sacrificing a bit of production immediacy for
periodic production of many more outputs.

Doing so requires that we organize the data to be scanned for
the massive, one-time process. When we have a huge number
of reports to produce, we can load all data for a particular
customer contract or vendor contract into memory at one time.
This isn’t all data for all contracts; we only load that data related
to a single customer contract into memory at one time. Then
all reports have access to it for use in all reports to be produced
in that scan of the data. After they have used that data, the
next contract is brought into memory.

This is a bit of the best of both worlds: In-memory use for a
subset of data, allowing for efficient load of the memory from
disk at the same time.

As an example, all types of information needed for the
reports—all the information about each of our funds, all the
fund attributes like risk and fund manager, all the purchase
transactions, all the sales transactions, even daily point-in-time
balances for some portion of history—are brought into

METRIC ENGINE

- 90 -

memory at one time. Because the various record types for a
single contract all exist in memory all at once, they can be
joined together very efficiently; all the attributes on all records
are available for selection, sort, or aggregation. This technique
creates a very data-rich environment for a very short period.

Greater usefulness comes if the additional low-level processes
like multi-currency can be performed during this same scan of
the data; the needed transactions are generated and applied all
within this same process. The usefulness of our data is limited
without these processes, and reading and writing all the data to
perform these functions would consume a large portion of this
precious window for processing.

The reports that are the more difficult ones to produce
aggregate large amounts of data, but the end output tends to be
very small; often they fit into a spreadsheet. It is possible to
allocate a portion of memory to each of the reports being
produced from this scan, and begin initial sort and aggregation
processes immediately upon record selection. This allows us to
manage the very high data volumes required for the aggregation
phase. This approach uses all the compute resources very
effectively.

Some have likened this to the effectiveness of mass transit as
opposed to individual cars: All travelers needing to get
somewhere use the same vehicle, and all reports requiring low-
level data share the same access to it. Mass transit requires a
synchronized start for all travelers, and all queries must also
start at the same time, a slight disadvantage to this approach.

However, taking this approach has some interesting side
benefits. This same tooling may be useful in the low-level
posting process of preparing the inputs for manufacturing, for
aren’t those steps the same as a balance assembly line? The

SCALE

- 91 -

only difference is that one set of outputs is stored as the input
for the next time.

No matter which approach we take, a method of performing
parallel processing must be used in both options. Parallel
processing is a way of accomplishing more work in the same
amount of time by using more than one CPU to do the work,
like having more people in our conference room analogy, and
even more conference rooms for more people.

Aggregation will require, in the end, all the data selected to be
brought together onto whiteboards in one room for merging, if
not sorting and summarizing.

Historical
Business
Events or Low-
Level Balances
Repository

High-speed generalized aggregation & join engine

User specified
Selection, Sort
Aggregation &
Join Rules

 R
e

fe
re

n
c
e
 D

a
ta

Sources and

Events

Consistent
Analytical
Outputs

Code Set

Translation

Figure 5 – Quantitative Aggregation Engine

METRIC ENGINE

- 92 -

The speed and scale of this final aggregation process
determines the breadth of the potential outputs for our
assembly line.

The concepts just discussed are very different than all but a
couple of posting processes I am familiar with, but they have
been proven to work. These aren’t small little theoretical test
cases either; these are mission critical book of record financial
systems processes for a Fortune 500 financial services firm and
for one of the world’s largest banks, each operating now for
years. For example, on a daily basis these systems do this type
of work:

 In 30 minutes of elapsed time and about 3 hours of
parallel processing time, 2.4 billion records are read,
extracting summarized and detail records totaling 72
million records, doing nearly 1 billion joins producing
hundreds of outputs.

 Starting at 3 AM, 19 million transactions are exploded
into 200 million entries, which are posted against a 7
billion row master file, which is also revalued for multi-
currency and other financial functions, and all this
completes by 7 AM, producing hundreds of outputs at
the same time.

These are real world metric engines.

- 93 -

Chapter 15

DATA REACTIVE FUNCTIONS

Major Data Supply Chains

et’s go back to where we began: metrics for
measurement. There are a set of major “data reactive”
functions in most organizations today that produce

metrics of tremendous value. They can be called data reactive
because almost no one enters any new data into them directly
and they capture and record almost no new transactions or
“business events.” Rather, these systems receive, and react to
the data created earlier in a host of operational systems. The
outputs are a myriad of metrics used to measure activities
within an organization.

These systems include the financial, risk, and management
information systems (MIS) data supply chains.

The oldest of these systems and the historical center of high
quality quantitative data—in high-level summary—is the
general ledger or GL. It has been developed over decades, with
processes honed through incremental improvements and
rigorous quality audits enforcing financial reporting standards.
It gathers all financial data—highly quantitative—systematically
from almost all source data systems which contain financial
data today.

The metrics it produces include Net Income, Earnings Before
Interest and Taxes (EBIT) Total Revenue and Total Expenses,
Total Assets, Total Liabilities, Owner’s Equity, and others.

L

METRIC ENGINE

- 94 -

Because of its age, the data in the general ledger is very well
known. Although its data is highly anticipated, it is not at the
center of most of the recent questions, often because we’ve
used the data to produce all the interesting facts it contains in
its summarized format. The advent of the other data supply
chains was, in many respects, a reaction to its highly
summarized nature.

Building our metric engine begins with gathering high quality
data. It does not begin from scratch, but rather with today's
trusted system of record, the GL, the system with the quality
seal of approval. If our quantitative results match the GL, we
will have greater confidence the answer is correct.

The GL summarizes business events by attributes called the
accounting code block, or Chart of Accounts (COA). Because the
GL summarizes data from all source data systems according to
this set of fields, the COA becomes a common language
running throughout the organization, at least for financial
transactions. It provides an organizing principle around which
we can build.

My father explained to me once that in order to start a bridge
across a canyon, workers would first tie a string to an arrow,
and shoot the arrow across to workers on the other side. The
workers would then tie the string to a rope, and the workers on
the far side would pull across the rope. A cable would then be
tied to the rope and pulled across, and another cable would
then be pulled back the other way, leading to a temporary
bridge enabling the building of the permanent structure. It all
began with an arrow and a string.

The GL’s COA is the string to allow us to find the high quality
data in the source data systems. Its consistency throughout the
organization, and the data needed to support it, allows us to
understand the data we already have captured. The existing

DATA REACTIVE FUNCTIONS

- 95 -

balances in the GL are the arrows. We can prove to ourselves
we have captured the high quality data for our analytical engine
by tracing these feeds backwards from the GL to the details
they originally consumed. These details provide the starting
point of the detailed repository.

The finance system, though, tends to be a backwards-facing
system. It tells us only what has happened.

The risk systems, specifically those for credit, market, and
liquidity risks, tend to be very sophisticated forecasting engines,
analyzing many potential outcomes. The risk systems are not
as old as the finance system, but are becoming increasingly
critical, particularly in financial services. In insurance
companies, they predict what potential losses might be; in
banking, they explain the cumulative standing of customers and
trading partners. Regulations are developing rapidly to make
them as rigorous as the finance system.

Today, the risk and finance systems are fed as two distinct
supply chains. When the finance system’s historical perspective
catches up to the risk projections, differences between expected
and actual results may be due to two variables: inaccurate risk
models and inconsistent data in the supply chains.
Consolidating data supply chains by increasing the detail of
finance data provides a feed to the risk systems and eliminate
one variable, increasing assessed risk accuracy.

The result? Higher quality risk models from feedback from
high quality historical data, resulting in higher quality
quantitative analytics.

Are there other business events—perhaps non-financial or at
least non-GL transactions—required to answer the risk system
needs? Of course there are. Our metric engine will need to
include these new business events, but the principles of

METRIC ENGINE

- 96 -

processing these are likely very similar at least in the initial
steps.

The depth and width of these data reactive functions vary. The
width of the function in Figure 6 represents the types of
metrics that must be kept, and the length of the function
represents the number of steps in the data supply chain. For
example, the finance data supply chain is quite wide (it must
keep track of all the balances for the balance sheet and income
statement for the enterprise), but the number of steps are
relatively short, including accounting rules application,
adjustment, multi-currency, etc.

The risk system is more narrow in its concerns. For example, it
does not care about buildings or supplies expenses. But the
number of steps required in the risk data supply chain is much
longer. Simply accumulating customer and counterparty
balances is only the beginning. Other processes follow: stress

MIS/CRM

Risk

Finance % of Balance
Sheet & Income
Statement

Steps in process

Figure 6 –Data Function Widths and Lengths

DATA REACTIVE FUNCTIONS

- 97 -

testing, scenario generation, and the calculation of various
metrics, such as loss given default and probability of default.

For example, a customer’s outstanding loan to the bank may be
multiplied by a measure of that person’s estimated potential
inability to pay: 0% for low risk customers and 100% for those
who are unlikely to pay the loan back. A metric engine can
accumulate these transactions to estimate projected losses.

In some instances, there are interdependencies between these
functions even in today’s independent data supply chains. For
example, the risk system will calculate a loan loss reserve, which
is included in the finance system. Our new system would also
need to allow the addition of new metrics based upon the
results of analysis of existing quantitative data.

The last major data reactive function is the Management
Information System (MIS), sometimes called performance
management system or key performance indicator (KPI)
system. This system was developed to measure internal
company performance, and has historically been closely linked
to the financial system, because the financial system provided
many of the needed metrics, but not all.

Whereas the GL measured overall company performance, or
perhaps divisions and departments, MIS evaluated employee
and management performance. What are the sales per sales
person? What is the profit for a particular store? How much
did support functions like finance and risk cost?

Perhaps the ledger provided these answers, but if not, MIS
added other attributes not captured in the GL. If there was a
type of report that required a different view of the data than
accounting standards required, it was done in the MIS system.
If additional non-financial attributes were needed, MIS could
capture the transactions.

METRIC ENGINE

- 98 -

The MIS system didn’t have the same data quality standards as
the financial system; it just had to be good enough that
employees and management couldn’t argue with the results.

And the challenges in this system have been quite clear; more
metrics would allow measurement of more things, with
potential improvements in more areas. Yet the ability of the
systems to gather data for new measurement has been severely
limited. Continuing regulatory changes in the finance and risk
systems have consumed discretionary spending which could
have been applied to MIS. In addition, the nature of the
systems precludes flexibility; posting processes provide
predetermined answers.

One of the major areas of potential innovation in the MIS
space is getting to true customer profitability and service
costing models. This is where the real innovation lies, because
it unleashes the creativity of the people in the organization.
Rather than complying with regulations, they can come to
understand customers, products, services, costs, and processes,
all through measurement.

All three of these data supply chains measure things. What
they measure differs, but a great deal of the input data used for
measurement is shared. If we overlaid the bars in Table 6, the
overlapped area is very valuable, common data.

Greater flexibility in our measurement systems may have
dramatic, and in fact unexpected consequences.

- 99 -

Chapter 16

CONSOLIDATION

The Impact of Change

ooking back, we can see that it was difficult to predict
every way the Internet changed our lives, personally and
professionally. No one seems to have been completely

right. Perhaps some predictions were overstated, but no one
can say that the impact has been small and unnoticed. Search
engines have proven tremendously valuable in increasing
productivity. The value of innovation in this space has paid for
itself many times over.

It is similarly difficult to guess at what the benefits might be for
a more streamlined quantitative analytical engine. The changes
may be just as profound, though. It is likely that investments in
a new breed of metric engine will eliminate the need to
maintain multiple systems, all of which accumulate quantitative
data.

Incremental improvements in metrics engines have been made
and continue to be made largely in the data reactive systems
such as finance, risk and MIS described above, especially in the
financial services sector. Drivers specifically for this industry
for metric engines include:

 Cost Reductions from (1) reduced development time
for creation of new reports and analysis (2) less
reconciliation, and (3) lower cost for compliance
reporting.

L

METRIC ENGINE

- 100 -

 Increased Productivity from (1) availability of data with
common codes, definitions, granularity and frequency,
and (2) the flexibility to change the functional operating
model.

 Improved Allocation of Capital, Liquidity Management,
and Performance Metrics through (1) improved
understanding of risk and capital usage from portfolio
to product levels, (2) quicker management actions to
avoid losses via quicker trend reads from reliable Risk
and Finance figures, (3) improved new-customer
targeting and credit extension and (4) improved
customer netting.

 Improved Regulatory/Stake Holder confidence through
(1) reduction in regulatory capital requirements, and (2)
credibility with regulators from cleaner source data,
fewer reconciliations and breaks, cross-validated risk /
financial results, and more frequent analytics.

These predictions are not theoretical; very large organizations
have proven the fundamental principles actually work, and the
trajectory for innovation is correct.

Let’s go back to some of those simple examples in chapter 1
and imagine what the process might look like in the future:

Revenues An executive responsible to approve pricing on a
major deal for a global client uses a simple query to accumulate
the top 100 customers by using the global customer identifier
of revenue by year for the last three years. This request uses
the low-level postings, and accumulates the daily balances to
arrive at each year’s values. Joins are used to get to the
customer, accumulating customers with more than one product

CONSOLIDATION

- 101 -

or contract.* A pass through all customers is required,
evaluating each to see if it qualifies as a top 100.

With this simple query in hand, suppose the executive notices
this customer is not in the top 50 customers, perhaps casting
doubt upon the proposed offered price.

Because of the highly aggregated nature of today’s financial
systems, fulfilling this simple request is often not possible.
Only with an improved, more detailed data supply chain, could
it be done.

Risk and Forecasting Imagine that upon reflection the executive
realizes a major product shift could be skewing the historical
trends. So the executive decides to add another column to the
report containing a simple risk adjusted forecast of those
revenues. To do this, perhaps the executive selects only
revenue based upon the new product line, excluding the
historically larger but declining product, and uses a weighted
average of buying trends over time. The executive multiplies
this by the internal risk department’s local customer (not the
global customer ID) risk rating, which is based upon detailed
divisional financial measures and more accurate than the global
company ratings.

This new metric gives a sense of the trend of the customer
relative to the more important new product, and their ability to
fulfill the contract requirements. This requires selecting and
pivoting our low-level balances by product type, and including
new, non-finance measures of risk assessment by customer.
This report might show that this customer is number one in the
world for the new product line and financial ability to pay.

* A recursive call up a customer hierarchy may be necessary to arrive at the
global customer identifier.

METRIC ENGINE

- 102 -

Today’s risk and forecast systems are typically almost
completely separate from the financial systems, so combining
them into a single analysis at any level but the highest company
or geographic level is impossible. Only by consolidating these
data supply chains would this analysis be possible.

Profit. Having examined revenue and risk, our executive is
ready to think about profit. Suppose the executive adds
another column to the report. Remember, costs don’t typically
accumulate because we paid something to a customer; rather
they accumulate from payments to vendors, employees,
suppliers, even overhead departments like real estate and so on.
But these costs can be organized in the same way as our
customer/contract metrics, with base metrics and joins to
vendor and other attributes.

Yet we still have a problem: Our report is sorted and
aggregated by customers, and our cost data cannot be. So, this
process will not be one which simply accumulates data from
the source data systems; rather, an intermediate analytical
process will be required to get to a unit cost. Our executive
might use data someone else has generated to calculate unit
costs.

But what if the executive wanted to calculate his own unit
costs? One simple measure would be to take the total costs for
the company for some period of time, divided by the number
of units or all products produced or sold during the same
period. So our new system has to have the ability to store new
data which can be used as input to another query.*

* An interesting element of banking is that the financial balances as
represented in deposits are the majority of the raw material for the loans. So
funds transfer pricing is a type of allocation or internal pricing to determine
the cost and value of funds.

CONSOLIDATION

- 103 -

Perhaps such analysis shows our executive that the proposed
pricing for the contract will result in a loss on the contract.

This sort of analysis could produce tremendous new insights
about how costs flow through the organization. Such flexibility
is impossible for all but the smallest organizations and data.
Yet such analysis would almost certainly improve most
organizational results.

Unit Costs The decision on the contract really depends upon
these costs. Suppose the executive senses a need to drill down
on the costs involved. Doing so is the process of executing
more and more specific queries targeting the data selected for
drill down.

Suppose the executive finds that a major component of the
new product unit costs is an allocated cost for a department
that has historically been allocated to all products, but provides
limited support for the new product. If this cost is eliminated,
the contract price provides an adequate profit per unit.

Here’s a case where transparency highlights an outmoded
analytical approach; the allocated department is a cost that will
diminish as the old product line declines.

This type of measurement is critical to improving our products
and services. This type of insight is essential to moving to the
next level in our economic activities. Better quantification of
the increasing amounts of data can force us to understand our
complex world more thoroughly, and encourage us to take
more effective actions.

METRIC ENGINE

- 104 -

- 105 -

EPILOGUE

tudy history I was once told. I’ve attempted to outline
where quantification might go next, the foundations of a
metric engine, its purpose, how it would need to operate,

and the resulting types of functions it might enable. One
question not answered is how it might be funded.

In my years of experience in this space, I have worked in
various industries. I have gravitated toward financial services
because metric engine functions are closely related to the core
of those businesses. Thus, most of the examples in this book
come from this space. Yet all organizations have finance
departments. They all deal with quantitative analysis.

The data reactive function drivers will continue to motivate
incremental improvements in finance, risk and MIS functions if
for no other reason than public policy as expressed in
regulations will require greater accuracy and transparency in
decisions making.

Yet because these data reactive functions are still primarily
support functions to the core business, even in financial
services, this work is not likely to cause a major acceleration in
the development of a metric engine.

A more transformative capability, building upon these data
reactive functions, would be risk adjusted customer
profitability. It combines the results from finance, risk and

S

METRIC ENGINE

- 106 -

MIS into a single analytical output. Because of its focus on
customers specifically, this function has significant potential to
affect how an organization behaves, financial services or other
industries; parts of the organization are no longer motivated to
exploit gaps between the data reactive analytical functions.

Risk adjusted customer profitability, though, can still be built in
a manner removed from the core functions of the business.
Those core functions are usually isolated in the product
systems. In financial services, these core systems support the
creation and sales of financial products like loans, deposits, etc.,
pricing those products using interest rates and fees, and
managing customer accounts and functions.

Almost all of the analytics of these core processes are at the
heart of metric engine outputs. Development of products,
assessment of individual risks, customized pricing… all these
things would be radically altered through a more flexible metric
engine. I believe a major metric engine business would likely
use a financial services business model in some way. The
financial services functions are at the heart of a metric engine.

So financial services will be significantly impacted if and when a
true metric engine of the simplicity and scale of search engines
is developed. Yet just like the information providers of the late
90’s did not create the great Internet search engines, financial
services firms may not be the first to create a true metric
engine. The weight of the fragmented legacy system
environments may significantly inhibit them.

Who else might accelerate the development of a true metric
engine? Perhaps a search engine? As we have compared here,
they have many of the functions in place to do so. It is very
possible they may take on this new, expanded problem.

However, the business model for these businesses today is
quite different. The search engines business is based upon

EPILOGUE

- 107 -

advertising. The cost of the “materials” they sell—the search
results—are effectively free to search engines; people publish
them on websites. Quantitative data will not be so easily
procured. Quantitative data, like a customer transaction, is
typically highly valued, and not released to everyone. The
language of the data today is not the same as spoken language,
which the search engines use today, further complicating the
efforts.

The value derived from a metric engine may justify a
subscription model, but probably cannot be provided at
advertising rates. Therefore, although it is certainly possible
search engines may take this on, it is not certain they will.

Might someone else develop a metric engine? Another possible
industry is telecommunications. Telecoms have been managing
large amounts of data for years because most consumers
interact with no other business as frequently as they do with
telecommunications providers. Call detail, recording who
talked to whom, for how long, where and when is very
voluminous. Telecom providers know how to manage large
amounts of data.

However, although today’s telecom data is being used for more
and more sophisticated purposes like these discussed in metric
engines, historically call detail is not typically manipulated and
added up in all the different ways financial data is. Posting
processes create balances for minutes used or remaining, but
time is typically not as broad a measure as value measured in
monetary terms. Even so, it is possible they could add these
capabilities.

My guess is that if a significant acceleration in the development
of metric engines is to occur, it will likely be in one of these
three industries, and it will likely rely upon the revenue models
of financial services. However, Internet search engines did not

METRIC ENGINE

- 108 -

necessarily come out of an existing industry. And all industries
have some level of quantitative metric analysis, in at least the
finance area. So, the development could come from a very
different direction.

Whether the development of a true metric engine accelerates or
simply continues more slowly as it has for the last couple of
decades, someday more powerful metric engines like the one I
have described will come along. The trajectory is quite clear,
tracked now over centuries.

Study history? Consider the analysis of the causes of western
advances during the Middle Ages by noted history professor
Alfred W. Crosby. He argues the West developed a new way of
thinking called “Businesslike.”

Businesslike means careful and meticulous and, in
practice, is a matter of numbers. It was one of the trails
that led to science and technology insofar as its
practitioners were quantitative in their perception and
manipulation of as much of experience as could be
described in terms of quanta. In their case the quanta
were money - florins, ducats, livres, pounds, and so
on.…

Double-entry bookkeeping was and is a means of
soaking up and holding in suspension and then
arranging and making sense out of masses of data that
previously had been spilled and lost….Today
computers compute faster than friar Pacioli would ever
have dreamed possible, but they do so within the same
framework (accounts payable, accounts receivable, and
all) as he did. The efficient friar taught us how to oblige
grocery stores and nations, which are always whizzing
about like hyperactive children, to stand still and be
measured….

EPILOGUE

- 109 -

In the past seven centuries bookkeeping has done more
to shape the perceptions of more bright minds than any
single innovation in philosophy or science. While a few
people pondered the words of Rene Descartes and
Immanuel Kant, millions of others of yeasty and
industrious inclination wrote entries in neat books and
then rationalized the world to fit their books…

In practical terms, the new approach was simply this:
reduce what you are thinking about to the minimum
required by its definition; visualize it on paper, or at
least in your mind, be it the fluctuation of wool prices
at the Champagne fairs or the course of Mars through
the heavens, and divide it, either in fact or imagination,
into equal quanta. Then you can measure it, that is,
count the quanta.

Then you possess a quantitative representation of your
subject that is, however simplified, even in its errors
and omissions, precise. You can think about it
rigorously. You can manipulate it and experiment with
it, as we do today with computer models. It possesses a
sort of independence from you. It can do for you what
verbal representation rarely does; contradict your
fondest wishes and elbow you on to more efficacious
speculation. It was quantification, not aesthetics, not
logic per se, that parried Kepler’s every effort to thrust
the solar system into a cage of his beloved Platonic
solids and goaded him on until he grudgingly devised
his planetary laws.*

* Alfred W. Crosby, The Measure Of Reality: Quantification And Western
Society, 1250-1600 (Cambridge University Press, 1997) Pages 200, 220, 221,
228.

METRIC ENGINE

- 110 -

- 111 -

- 112 -

- 113 -

APPENDIX:
CURRENCY EXCHANGE CALCULATIONS

The tables on the following page describe the calculations used
to produce Foreign Currency Example Table 13 on page 75.

Quantitative metric analysis requires establishing consistency in
units before performing certain mathematical functions, like
aggregation. This is the purpose of foreign exchange
calculations.

In a simple way, a transaction must be converted to the foreign
currency at the rate applicable when the transaction took place.
For example if the transaction takes place at 1:00 PM, then the
rate in effect then should be used.

After that time, the balance in the foreign currency must be
revalued to reflect changes in the exchange rate. This could be
done by again simply multiplying the outstanding balance with
the new rate as of that point in time. This approach, though,
will leave unanswered the question what was the effect of
changes in exchange rates? One could subtract the two
balances to get to effect. A more common approach is to
multiple the last revalued balance by the change in exchange rate
since then, storing this transaction, which when accumulated
with other transactions answers the effect question.

There are many more aspects to just this specific problem, and
many other similar types of processes, like elimination
processes, which take out transactions within a unit so they
don’t gross up the activity. Yet all of these processes can create
transactions, which can be used just like any other transaction.
Creating and posting these transactions is the most complex
part of the work the metric engine will have to do.

- 114 -

Given this input data:

Currency Date Rate
Change in

Rate

CAD-USD Jan. 1 0.860720 N/A
CAD-USD Jan. 2 0.852122 -0.008598
CAD-USD Jan. 3 0.848572 -0.003550

Fund
ID

Balance/Trans-
action Type

Bal.
Date

Curr-
ency Amount

3 Opening Bal Jan. 1 CAD 737.32
3 Fees Paid Jan 3 CAD (3.45)

Results in these additional transactions, which must be turned
into balances to be used in metric engine analyses:

Fd.
ID

Balance/Trans-
action Type

Bal.
Date

Curr-
ency Amount

3 Open Bal. Conv. Jan. 1 USD 634.63
3 Bal. Revaluation Jan. 2 USD (6.34)
3 Bal. Revaluation Jan 3 USD (2.62)
3 Fee Paid Conv. Jan 3 USD (2.93)

The calculations are as follows

Date Type
CAD

Balance
Exchange Rate

or Change
USD

Balance
1-Jan Transaction 737.32 0.860720 634.63
2-Jan Rate Chg. Effect 737.32 -0.008598 (6.34)
2-Jan Closing Balance 737.32

628.29

Proof (bal. x rate) 737.32 0.852122 628.29

3-Jan Rate Chg. Effect 737.32 -0.003550 (2.62)
3-Jan Fees Paid (3.45) 0.848572 (2.93)
3-Jan Closing Balance 733.87

622.74

Proof (bal. x rate) 733.87 0.848572 622.74

INDEX

- 115 -

FIGURES

The Data Flow Analogy 9
Computer Parts Analogy 44
Quality and Types of Information 56
Summary Response Impact 86
Quantitative Aggregation Engine 90
Data Function Widths and Lengths 96

TABLES

Example Table of Balances 16
Example Table of Transactions 17
Example of Balances by Month 19
Transparency Example 23
Example Posting Process 30
Counts of Attributes 36
Example Report Discrepancy 40
Translation to Common Language 62
Movement Example 66
Balance Attribute Example 68
Join Example 71
Effective DateExample 73
Foreign Currency Example 75
Multiple Report Input Example 78
Multiple Report Output Example 79

GRAPHS

Minimized Reconciliation 30
Minimized Computing 31
Balances by Attribute Combinations 48
Typical Daily Processing Cycle 48
Detailed Balances with Pivot to Alternatives 49

METRIC ENGINE

- 116 -

INDEX

A

Accounting code block, 95

Accounting Rules Engines or ARE,

61

Accumulate, 7

Accumulator, 83

Accuracy, 11, 20, 39

Activity, 62

Adjustment, 64

Aggregate, 9, 63, 82, 84

Aggregation, 53, 57, 92

Amount, 7, 8

Analysis, frequent, 48

Analysis, periodic, 48

Archive, 8

Assembly line, 6, 51, 53, 66, 77

Attributes, 34, 35, 38, 48, 68, 71,

73, 75, 98

Availability, 34, 50

B

Backwards, run computer, 40

Balance, 16, 27, 29, 36, 43, 53, 62

Detailed, 21, 48

manufacturing, 52

New, 34

Running, 69

Balances

Low-level, 71, 82, 85, 86

Bank, 88, 98

Banking, 37

Banks, 35

Binder, 44, 89

Bookkeeping, 109

Bridge, 95

Bucket, 33

Business application architecture,

35

Business events, 61

C

Calculations, 84

Categorization, 22

Chart of Accounts, 95

Classify, 68

Completeness, 11

Compute capacity, 31, 38, 39, 43,

45, 49, 67, 85

Compute resource, 27, 30, 66, 86

Consolidation and elimination, 75

Contract, 53, 71

Copies of data, 6, 20, 43

Correction, 20

Cost, 90

Compute resources, 89

Of posting, 40

System, 12

Count, 15

CPUs, 89

Crawlers, 60, 77

Credibility, 39

Critical, 46

Crosby, 109

Currency, 71

Customer, 53, 71, 75

Customer profitability, 99

D

Daily, 61, 68

Data cleansing, 64

Data modeling, 70

Data reactive functions, 94

Data supply chain, 38

Date, effective, 73

Deletion, 7

Denormalizing, 70

INDEX

- 117 -

Detail, 12, 21

Directories, 60

Disk, 89

Divergence, 47

Drill down, 12, 22, 53, 85

Duplicate, 26

E

Effective date, 73

Efficient, 39

Encoding, 7, 40

Endcoding, 63

Error, 26, 31, 66

Extract, Transform, Load or ETL,

61

F

Financial, 94

Financial systems, 33

First-level posting, 52

Flexible, 26

Flight, 6

Forecast, 3, 51, 96, 102

Formats, 38

Frequency, daily, 48

G

General ledger, 37, 71, 94

General Ledger, 35, 37

GL. See General Ledger

H

Hierarchy, 37

History, 106

I

Incompleteness, 40

Indexes, 89

Infer, 24

Informational, 49

Innovation, 43

Inputs, 60

Insurance, 35, 37

Inventory, 33

J

Join, 71

Just-in-time, 51, 52, 85

K

Key, 71

L

Language, 7, 40, 63, 73, 75, 95

Layers, 33

Level, 84

Limits, 43

Link, 24

Low-level balances. See Balances,

low-level

M

Management Accounting. See MIS

Manufacturing, analogy, 5, 51

Mass transit, 91

Master file, 30, 36

Measure, 2

Meeting, analogy, 44

Memory, 89

Metric engine, 82

Metrics, 94

Middle Ages, 109

MIS, 37, 94, 98

Morning, 46

Movement, 67

Multi-currency, 74, 76

Mutual funds, 71

METRIC ENGINE

- 118 -

N

Narrative, 15

Netted, 62

normalizing, 70

Number, 55

O

Obstacles, 11

Operational, 6, 49, 61, 75, 87, 94

Overhead, 3

P

Pacioli, 29

Parallel, 92

PC, 52

Performance, 50

Periodicity, 48, 49, 90

Periods, 61

Permutations, 46

Piles, 15, 19, 33

Posting, 29, 32, 33, 38, 39, 45, 48,

66, 75, 87

Low-level, 73, 88

Posting engines, 57, 60

Prediction, 3

Product, 71

Profit, 3, 103

Programs, 39

Proliferation, 35

Punched cards, 35

Q

Qualitative, 2, 55

Quality, 55, 99

Quanta, 2

Quantification, 1, 104

Quantitative, 55, 110

Quantitative analytics, 61

Questions, 34, 44, 53, 55

R

Reconciliation, 26, 30, 35, 40, 48

Regulatory, 38

Repeatability, 22

Repositories, 8

Response time, 86

Revenues, 3, 101

Risk, 3, 38, 73, 94, 102

Risk systems, 96

S

Scale, 93

Scan, 90

Search engines, 55, 82, 100

Select, 82

Sensitive data, 6

Snapshot, 62

Sort, 82, 83

Source system. See Operational

Speed, 43, 44, 86, 89, 93

Spiders. See Crawlers

Spreadsheet, 15, 56

Structure, 56, 71, 82

Subassemblies, 52

Subassembly, 75

Subset, 46

Summary, 12

Transaction vs Balance, 26

T

Temperature, 1

Time, 38, 45, 48, 50, 71, 88

Time zone windows, 53

Timeliness, 12

Time-sensitive, 46

Traceability, 22

Tracing, 22

Transaction, 17, 21, 29, 34, 44, 52,

57, 62, 75, 83

Transfer pricing, 75

Translate, 63

INDEX

- 119 -

Transparency, 12, 21, 50

Truing up, 18

U

Unit Costs, 4, 104

V

Value, 15

Vendor, 71

Volumes, 37, 75, 84, 88

W

Whiteboard, 44, 89

Why, 21

	Metric Engine Cover Only 2015-05-01
	Metric Engine V1.08 Final 2015-05-06 Full.pdf
	Metric Engine Cover Only 2015-05-01
	Metric Engine V1.08 Final 2015-05-06 Full.pdf
	Metric Engine Cover Only 2015-05-01
	Blank page
	Metric Engine V1.08 Final 2015-05-06 Internals.pdf
	Blank page
	Metric Engine Back Cover Only 2015-05-01

	Metric Engine Back Cover Only 2015-05-01

